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Tracker/misuratore di Z + spettrometro
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risoluzione spaziale:
• σx = 30 μm
• σy = 10 μm
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Beam

• protoni e nuclei di He
• momento: 180 GeV/c (prima parte) – varie (seconda parte)

“beam pipe”

• beam “spot”: σ~ 1cm (X e Y), gaussiana
• divergenza beam: σ~ 10 μrad (θx e θy), gaussiana



SCD + SM
Simulazione di un misuratore di carica al silicio e di uno spettrometro
magnetico costituito da un magnete e dai piani al Si:
• simulare tutto l'apparato, la produzione del fascio di particelle, la 

propagazione del campo magnetico, etc…



Scattering Multiplo

Interazioni Coulombiane con gli atomi del materiale deviano la 
traiettoria della particella con un “cammino dell’ubriaco”

• la media dell’angolo di deflessione è nulla: <θ> = 0
• la “divergenza”, invece, è non nulla: θrms ≠ 0
• approssimazione gaussiana
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the
mean loss of a minimum ionizing particle, 388 eV/µm (1.66 MeV
g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,

〈

dE

dx

〉

=
∑

wj

〈

dE

dx

〉

j

, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:
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Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.



Scattering Multiplo
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the
mean loss of a minimum ionizing particle, 388 eV/µm (1.66 MeV
g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,
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where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:
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Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.



Scattering Multiplo
Attenzione, la gaussiana 3D la possiamo fare come (θx e θx) o (θ e Φ)
• nel primo caso possiamo generare due gaussiane
• nel secondo caso NON si deve fare una gaussiana per θ e una uniforme per Φ: 

la uniforme è ok, ma la gaussiana no. θ infatti NON ha un massimo per θ=0 ma 
anzi ha un minimo: la probabilità di avere uno dei due (θx e θx) diversi da zero (e 
quindi di conseguenza θ) è nulla. Sul PDG, proprio per il MS, la cosa è spiegata 
bene: generando in θ ci va messo tutto l'angolo solido, cioè dΩ, cioè sin θ d θ, e 
quindi, di fatto va generata una

gaussiana * sin 
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the
mean loss of a minimum ionizing particle, 388 eV/µm (1.66 MeV
g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,
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where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:
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Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.



SCD + SM
Simulazione di un misuratore di carica al silicio e di uno spettrometro
magnetico costituito da un magnete e dai piani al Si:
• simulare tutto l'apparato, la produzione del fascio di particelle, la 

propagazione del campo magnetico, etc…
• simulare l'effetto del multiplo scattering, su tutti i piani al Si



Misura di carica

33. Passage of particles through matter 447

particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB

is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Fig. 33.1: Mass stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 −

δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼βγ <∼1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, ⟨−dE/dx⟩ defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is ⟨−dE/dx⟩ ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes ⟨dE/dx⟩ in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as ⟨dE/dx⟩.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples
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Nel passaggio di una particella carica attraverso la materia viene
depositata dell’energia (ionizzazione), rivelabile ed utilizzabile per 
rivelare la particella e misurare delle sue proprietà
• nel silicio vengono generate ~ 80 coppie elettrone-lacuna, in 
media*, per μm di materiale attraversato;
• per la generazione di ogni coppia sono richiesti 3.6 eV;

* in realtà 80 è il valore più probabile, mentre e la media è 108
** in realtà 80 coppie è il numero standard che si utilizza per particelle al minimo di 
ionizzazione (i.e. protone a un paio di GeV). Per un elettrone di centinaia di GeV è ~ 120
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33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−
dE

dx

∣

∣

∣

∣

T<Wcut

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wcut

I2

−
β2

2

(

1 +
Wcut

Wmax

)

−
δ

2

]

. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel Δp/x for :

Bethe

Tcut = 10 dE/dx|min
Tcut  =  2 dE/dx|min

Restricted energy loss for :
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a ln x + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a ln x + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.
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33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−
dE

dx

∣

∣

∣
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T<Wcut

= Kz2Z

A

1

β2

[

1
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I2

−
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Wmax

)
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δ
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This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel Δp/x for :
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a ln x + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a ln x + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,

〈

dE

dx

〉

=
∑

wj

〈

dE

dx

〉

j

, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:

θ0 =
13.6 MeV

βcp
z

√

x

X0

[

1 + 0.088 log10(
x z2

X0β2
)

]

=
13.6 MeV

βcp
z

√

x

X0

[

1 + 0.038 ln(
x z2

X0β2
)

]

(33.15)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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1
√

2π θ0

exp

⎧

⎪

⎪

⎪

⎪

⎩

−
θ2
plane

2θ2
0

⎫

⎪

⎪

⎪

⎪

⎭

dθplane , (33.17)

* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.
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33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−
dE

dx

∣
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. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel Δp/x for :

Bethe

Tcut = 10 dE/dx|min
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a ln x + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a ln x + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.

Il rilascio totale, in un certo spessore, x, di materiale, però è solo in 
media quello descritto.
Il rilascio è soggetto a fluttuazioni descritte ~ da una funzione di 
Landau (TMath::Landau(mp,σ)) con most probable value quello
descritto prima e σ descritto da:

à 4ξ significa σ = 2ξ

446 33. Passage of particles through matter

33. Passage of Particles Through Matter

33. Passage of Particles Through Matter . . . . . . . . . . 446

33.1. Notation . . . . . . . . . . . . . . . . . . . . 446

33.2. Electronic energy loss by heavy particles . . . . . . 446

33.2.1. Moments and cross sections . . . . . . . . . . 446

33.2.2. Maximum energy transfer in a single
collision . . . . . . . . . . . . . . . . . . . . . 447

33.2.3. Stopping power at intermediate ener-
gies . . . . . . . . . . . . . . . . . . . . . . 447

33.2.4. Mean excitation energy . . . . . . . . . . . . 449

33.2.5. Density effect . . . . . . . . . . . . . . . . 449

33.2.6. Energy loss at low energies . . . . . . . . . . 449

33.2.7. Energetic knock-on electrons (δ rays) . . . . . 449

33.2.8. Restricted energy

loss rates for relativistic ionizing particles . . . . . . 450

33.2.9. Fluctuations in energy loss . . . . . . . . . . 450

33.2.10. Energy loss in mixtures and com-
pounds . . . . . . . . . . . . . . . . . . . . . 451

33.2.11. Ionization yields . . . . . . . . . . . . . . 451

33.3. Multiple scattering through small angles . . . . . . 451

33.4. Photon and electron interactions in mat-
ter . . . . . . . . . . . . . . . . . . . . . . . . 452

33.4.1. Collision energy losses by e± . . . . . . . . . 452

33.4.2. Radiation length . . . . . . . . . . . . . . 452

33.4.3. Bremsstrahlung energy loss by e± . . . . . . . 453

33.4.4. Critical energy . . . . . . . . . . . . . . . 453

33.4.5. Energy loss by photons . . . . . . . . . . . . 454

33.4.6. Bremsstrahlung and pair production
at very high energies . . . . . . . . . . . . . . . 455

33.4.7. Photonuclear and electronuclear in-
teractions at still higher energies . . . . . . . . . . 455

33.5. Electromagnetic cascades . . . . . . . . . . . . . 456

33.6. Muon energy loss at high energy . . . . . . . . . 457

33.7. Cherenkov and transition radiation . . . . . . . . 458

33.7.1. Optical Cherenkov radiation . . . . . . . . . 458

33.7.2. Coherent radio Cherenkov radiation . . . . . . 458

33.7.3. Transition radiation . . . . . . . . . . . . . 458

Revised August 2015 by H. Bichsel (University of Washington), D.E.
Groom (LBNL), and S.R. Klein (LBNL).

This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation
The notation and important numerical values are shown in

Table 33.1.

Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.

Symbol Definition Value or (usual) units

mec
2 electron mass × c2 0.510 998 9461(31) MeV

re classical electron radius
e2/4πϵ0mec

2 2.817 940 3227(19) fm

α fine structure constant
e2/4πϵ0!c 1/137.035 999 139(31)

NA Avogadro’s number 6.022 140 857(74)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV
T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV
in a single collision

k bremsstrahlung photon energy MeV
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber g mol−1

K 4πNAr2
emec

2 0.307 075 MeV mol−1 cm2

(Coefficient for dE/dx)

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss

!ωp plasma energy
√

ρ ⟨Z/A⟩ × 28.816 eV
√

4πNer3
e mec

2/α |−→ ρ in g cm−3

Ne electron density (units of re)−3

wj weight fraction of the jth element in a compound or mixture

nj ∝number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV
Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2

33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”
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This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation
The notation and important numerical values are shown in
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Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.
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2 electron mass × c2 0.510 998 9461(31) MeV

re classical electron radius
e2/4πϵ0mec
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NA Avogadro’s number 6.022 140 857(74)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV
T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV
in a single collision

k bremsstrahlung photon energy MeV
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber g mol−1

K 4πNAr2
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2 0.307 075 MeV mol−1 cm2

(Coefficient for dE/dx)

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss
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ρ ⟨Z/A⟩ × 28.816 eV
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2/α |−→ ρ in g cm−3

Ne electron density (units of re)−3
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Es scale energy
√
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33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”
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included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.
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meanings.
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33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”

=                   =



Misura di carica
La misura dell’energia depositata nel singolo layer di Silicio può 
essere utilizzata per inferire alcune proprietà della particella 

incidente: 

Combinare l’informazione di N layer riduce di molto l’effetto delle 
fluttuazioni e fornisce uno strumento potente per la misura, ad 

esempio, della carica, z, della particella incidente   
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particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB

is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Fig. 33.1: Mass stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 −

δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼βγ <∼1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, ⟨−dE/dx⟩ defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is ⟨−dE/dx⟩ ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes ⟨dE/dx⟩ in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as ⟨dE/dx⟩.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples



Inefficienza
Non sempre l’energia depositata dalla particella viene “raccolta”

dall’elettronica di lettura (assenza di elettrodi di lettura, zone 
morte, materiale passivo, etc...) à inefficienza di rivelazione

Facoltativo: simulare, per i piani, un’efficienza di rivelazione del 95%: 
in media il 95% delle particelle incidenti dà luogo ad un segnale 

raccolto.
Il fenomeno è di tipo binomiale.



Misura di carica
La misura dell’energia depositata nel singolo layer di Silicio può 
essere utilizzata per inferire alcune proprietà della particella 

incidente: 

Combinare l’informazione di N layer riduce di molto l’effetto delle 
fluttuazioni e fornisce uno strumento potente per la misura, ad 

esempio, della carica, z, della particella incidente.

Le fluttuazioni, specialmente le lunghe code ad alti valori di ΔE, le 
possiamo “smorzare” con diversi algoritmi più “furbi”, tipo la media 

troncata (il valore più alto viene scartato), nel creare la nostra 
“carica ricostruita”

à valutare la “risoluzione in carica” (deviazione standard del 
valore di carica ricostruita su M eventi / media del valore di carica 

ricostruita su M eventi) con un ToyMC

33. Passage of particles through matter 447

particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB

is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Fig. 33.1: Mass stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 −

δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼βγ <∼1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, ⟨−dE/dx⟩ defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is ⟨−dE/dx⟩ ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes ⟨dE/dx⟩ in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as ⟨dE/dx⟩.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples



SCD + SM
Simulazione di un misuratore di carica al silicio e di uno spettrometro
magnetico costituito da un magnete e dai piani al Si:
• simulare tutto l'apparato, la produzione del fascio di particelle, la 

propagazione del campo magnetico, etc…
• simulare l'effetto del multiplo scattering, su tutti i piani al Si

• prima parte:
– valutazione della risoluzione in carica dell'apparato, confrontando anche p ed He. 

Usare due "fasci" dello stesso momento, 180 GeV/c



Spettrometro magnetico
Una particella carica, dentro il campo magnetico, curva

iniziale: 
pi =

{pix, piy, piz}
Ei

finale:
pf =

{pfx, pfy, pfz}
Ef

tracciando le posizioni di passaggio delle particelle (simulando la 
risoluzione spaziale) nei piani di silicio uno può ricostruire la traiettoria 
curva della particella e quindi il suo momento (o meglio: il modulo della 

componente trasversa al campo magnetico) 



Spettrometro magnetico

risoluzione spaziale:
• σx = 30 μm
• σy = 10 μm

la posizione misurata può essere 
simulata come la posizione vera con 
uno smearing gaussiano con σ uguale 
alle risoluzione spaziale del rivelatore

Una particella carica, dentro il campo magnetico, curva

iniziale: 
pi =

{pix, piy, piz}
Ei

finale:
pf =

{pfx, pfy, pfz}
Ef



Spettrometro magnetico

Una volta misurato il modulo della componente trasversa al campo 
magnetico, p, si può ricostruire anche la componente parallela, e quindi 
il modulo totale (p = p⫠ + p⫽), e poi il vettore completo, tenendo conto 

delle direzioni (misurate) delle tracce

Una particella carica, dentro il campo magnetico, curva

iniziale: 
pi =

{pix, piy, piz}
Ei

finale:
pf =

{pfx, pfy, pfz}
Ef



Spettrometro magnetico

à propagare le particelle nel 
campo magnetico 

à ricostruire la traiettoria 
curva, fittando i parametri 
dell'arco di circonferenza che 
minimizzano il χ2 (punti 
misurati dal tracciatore vs fit)

dipende dal segno di q e B

(x� x0)
2 + (y � y0)

2 = ⇢2

x2 + x2
0 � 2xx0 + y2 + y20 � 2yy0 � ⇢2 = 0

y2 � 2yy0 +
�
x2 + x2

0 � 2xx0 + y20 � ⇢2
�
= 0

<latexit sha1_base64="uEn1rKWcFk3LRMsjmQ/JeIel2ag="></latexit>

y1,2 = y0 ±
q

y20 � (x2 + x2
0 � 2xx0 + y20 � ⇢2) =

y1,2 = y0 ±
q

� (x2 + x2
0 � 2xx0 � ⇢2)

<latexit sha1_base64="bUc+36J2HaVQgkLvBKlekswjpVQ=">AAACjXichVHtbtMwFHUyGKPAVsb+8edqFahoW5VkGzAEaNImwc8i0XXS3EWO67TWnA/sG9Qo6ivxHLwCb4PTRUijm3YkS8fn3A/f6yhX0qDn/XHclQcPVx+tPW49efpsfaP9fPPMZIXmYsAzlenziBmhZCoGKFGJ81wLlkRKDKOrk9of/hTayCz9jmUuRgmbpDKWnKGVwvavMqz83WAOr+ETlKEHNE+Amh8aK3u7rKyzB1SJGLswuwxgB2ZWDqwYwKzmVikbheppVmdQLSdTfANzW5LS1t0d7ql8S8Ww3fF63gKwTPyGdEiDftj+TccZLxKRIlfMmAvfy3FUMY2SKzFv0cKInPErNhHVYptzeGWlMcSZtidFWKg34lhiTJlENjJhODX/e7V4m3dRYPx+VMk0L1Ck/LpRXCjADOqvgbHUgqMqLWFcS/tC4FOmGUf7ga3F6Ec13v4bdJmcBT1/v7f/7aBzHDRLWCMvyTbpEp+8I8fkK+mTAeHOlvPBOXFO3Q330P3ofr4OdZ0m5wW5AffLX4x5uog=</latexit>

finale:
pf =

{pfx, pfy, pfz}
Ef



Spettrometro magnetico

à propagare le particelle nel 
campo magnetico 

à ricostruire la traiettoria 
curva, fittando i parametri 

dell'arco di circonferenza che 
minimizzano il χ2 (punti 

misurati dal tracciatore vs fit)

à confrontare il momento 
ricostruito (la curvatura fittata) 
con quello generato e ricavare 

la risoluzione in momento 
dello spettrometro (i.e. la 

deviazione standard) 
(x� x0)

2 + (y � y0)
2 = ⇢2

<latexit sha1_base64="4MW1SscjCqLP0LRTvVLDFhQwfbI="></latexit>

la variabile che è 
distribuita gaussianamente 

non è la curvatura (o il 
momomento) ma il suo 

inverso (e quindo l'inverso 
del momento) 

finale:
pf =

{pfx, pfy, pfz}
Ef



SCD + SM
Simulazione di un misuratore di carica al silicio e di uno spettrometro
magnetico costituito da un magnete cilindrico:
• simulare tutto l'apparato, la produzione del fascio di particelle, la 

propagazione del campo magnetico, etc…
• simulare l'effetto del multiplo scattering, su tutti i piani al Si

• prima parte:
– valutazione della risoluzione in carica dell'apparato, confrontando anche p ed He. 

Usare due "fasci" dello stesso momento, 180 GeV/c

• seconda parte:
– valutare la risoluzione in momento, confrontando anche p ed He, in funzione del 

momento per una almeno decina di valori di momento nel range [1 – 1000] GeV/c



Programma e relazione
• Il programma scritto dovrà essere accompagnato da opportuno 

Makefile e istruzioni (se sono più di 10 righe c’è un problema!) di 
come compilarlo ed eseguirlo e come guardare i risultati 
(terminale, ROOT file da aprire o immagini salvate su disco);

• Il programma scritto dovrà essere accompagnato da una 
relazione che descriva le scelte fatte e i risultati ottenuti, ma che 
sia anche sintetica.
La relazione NON deve essere un manuale del programma ma 
una relazione: è ok descrivere le scelte informatiche fatte ma 
devono esserci anche considerazioni fisiche.



Relatività
Relatività:

~� =
~p c

E

~p = m0
~� c �

E = m0 c
2 � = mc2E2 = m2

0 c
4 + p2c2

� =
1p

1� �2



Unità di misura
Unità di misura:

ü eV = 1.6021766208(98)*10-19 J      (cfr. 
https://en.wikipedia.org/wiki/Electronvolt)
ma tipicamente si utilizza il GeV = 109 eV

– E in GeV

– p in GeV/c   à 1 GeV/c  = 5.344286*10-19 kg m/s
– m in GeV/c2à 1 GeV/c2 = 1.783*10-27 kg

spesso si usa c=1 e quindi tutte sono in GeV.

ü Le cariche si misurano in carica elementare, e.

à Particelle “comuni”:
- elettrone:       q = -e,  m ~  0.5 MeV

- protone:         q = e, m ~ 1    GeV

- nucleo di 4He: q = 2e, m ~ 4    GeV

https://en.wikipedia.org/wiki/Electronvolt


Relatività e unità di misura
Relatività:

che in un sistema di unità in cui c=1:

• un protone di 1 GeV di momento ha ~ √ 2 GeV di energia

• un protone di 10 GeV di momento ha ~ 10 GeV di energia
• un elettrone di 1 GeV di momento ha ~ 1 GeV di energia

~� =
~p c

E

~p = m0
~� c �

E = m0 c
2 � = mc2E2 = m2

0 c
4 + p2c2

� =
1p

1� �2

E2 = m2
0 + p2

E = m0 � = m

~p = m0
~� �

~� =
~p

E



Forza di Lorentz e unità di misura
à Nel caso dell’elettromagnetismo la conversione è banale.

Ad esempio il raggio di girazione, ρ, di una particella carica, in un campo 
magnetico uniforme è:

à la variabile che “domina” il moto è la rigidità

Per p=1GeV, q=1e (à R=1V) e B=1T

che può essere “mnemonizzato” come “mettere 0.3 davanti al campo B, 
utilizzando le formule in metri, GeV, cariche elementari e Tesla”:

⇢ =
p

qB

⇢ =
5.34 · 10�19 Kgm

s

1.6 · 10�19 CKg
C s

⇡ 1

0.3
m

⇢

1m
=

p
1Kgm/s
q

1C
B
1T

⇡ 1

0.3

p
1GeV
q
1 e

B
1T

R =
p c

q
(V)


