Exercise

1) Build a project consisting of
* aclass Rectangle, implementing separately the header file Rectangle.h and the
source file Rectangle.C
* a main program myprog.C that uses the Rectangle class
Compile the Rectangle object, the main object, and link them

class Rectangle

{
public:

Rectangle(double b=1, double h=1); //constructor

void setBaseHeight(double,double); //set base and heigth of the rectangle

double getDiag(void); //get the rectangle diagonal
double getArea(void); //get the rectangle area
double getB(void); //get the rectangle base
double getH(void); //get the rectangle heigth
private:

double base; double height;
~Rectangle(); //destructor

1) Build a project consisting of
a class Rectangle, implementing separately the header file Rectangle.h and the
source file Rectangle.C
a main program myprog.C that uses the Rectangle class
Compile the Rectangle object, the main object, and link them

Source File

Source File

Preprocessor

Preprocessor

>

Processed Code

>

Processed Code

Exercise

Compiler

Compiler

Object File

Object File

Linker
[:ibraries

Executable

0S

Program in Memory

Exercise

2) Use an external library to implement the getDiag function

We could use:
* GSL (GNU Scientific Library) is a library that provides basic and advanced math and analysis tools.

double gsl hypot(double x, double y)

(that basically returns sqrt (x*x+y*y))
GSL libraries 1ibgsl and 1ibgslcblas and the headers are available in the lab
computers
/usr/include/gsl
/usr/1ib64
e from ROOT libMathCore

double TMath::Sgrt(double a)
double TMath: :Power (double a, double b)

instead of using the “standard” sqrt () and pow()

Exercise

3) Write a Makefile to automatically compile your project

Exercise

4) Implement, for the Rectangle class and for the main function, some debug printouts via
a Preprocessor Directive

Exercise

5) Implement a ‘static’ method, Rectangle::Merge(), that accepts two Rectangle instances
as inputs, checks if one of the two sides (base or height) is equal and, if yes, returns a new
Rectangle object, sum of the two inputs.

In the main function, compute the Area and the Diagonal for this new Rectangle.

What happen if both the sides of the two inputs are different? What to return?

Exercise

6) Implement a method, overloading the ‘+’ operator (*), acting on one Rectangle instance
and adding to it another Rectangle instance:

Rectangle a;
Rectangle b;

Rectangle ¢ = a+tb;

(*) let’s define “sum” as the sum of both the base and height.

