Esercitazione finale "Tracker + calorimetro elettromagnetico"

Matteo Duranti

matteo.duranti@pg.infn.it

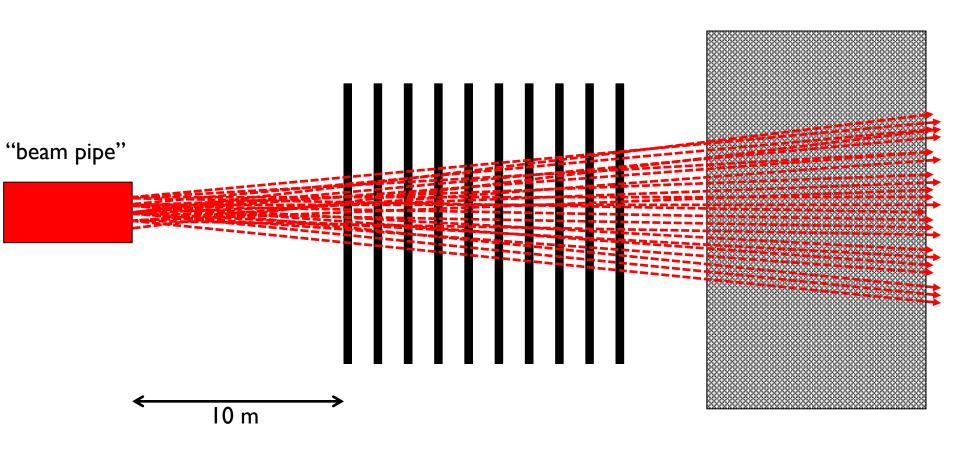
(cfr. https://en.wikipedia.org/wiki/Particle_shower http://pdg.lbl.gov/2018/AtomicNuclearProperties/HTML/silicon_Si.html http://pdg.lbl.gov/2018/AtomicNuclearProperties/HTML/copper_Cu.html http://pdg.lbl.gov/2018/AtomicNuclearProperties/HTML/bismuth_germanate_BGO.html https://root.cern.ch/root/html524/TMath.html#TMath:Landau https://arxiv.org/pdf/1405.2759.pdf Fig.4-5 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.98.030001 Chapter 33 C. Grupen – Particle Detectors, Chapeter 8)

Tracker + calorimetro elettromagnetico

10 piani di tracciamento al Si ∞ ("larghezza" tracciatore e calorimetro) ⇔ $\frac{\leftrightarrow}{3}$ cm 300 µm (distanza fra (spessore singolo 15 cm i piani) piano) 10 cm

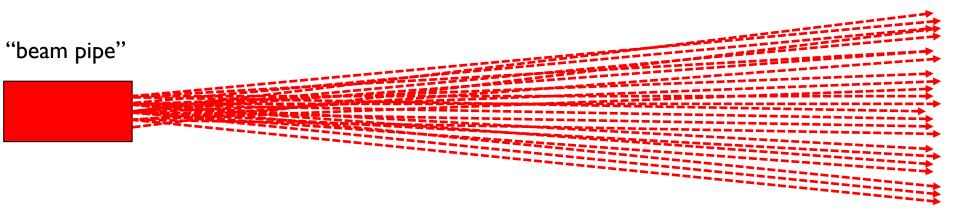
Calorimetro di BGO

Tracker + calorimetro elettromagnetico



Beam

- beam "spot": $\sigma \sim I \operatorname{cm} (X \in Y)$, gaussiana
- divergenza beam: $\sigma \sim 10 \mu rad (\theta_x e \theta_y)$, gaussiana

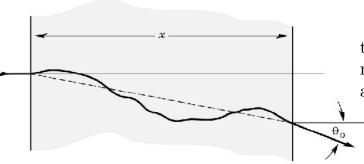


- elettroni ($\beta = v/c \sim I$)
- momento: 180 GeV/c

Scattering Multiplo

Interazioni Coulombiane con gli atomi del materiale deviano la traiettoria della particella con un "cammino dell'ubriaco"

If we define



$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}},$$
(33.14)

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of the projected angular distribution, with an rms width given by Lynch & Dahl [39]:

$$\theta_{0} = \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_{0}}} \left[1 + 0.088 \log_{10}(\frac{x z^{2}}{X_{0} \beta^{2}}) \right]$$
$$= \frac{13.6 \text{ MeV}}{\beta c p} z \sqrt{\frac{x}{X_{0}}} \left[1 + 0.038 \ln(\frac{x z^{2}}{X_{0} \beta^{2}}) \right]$$
(33.15)

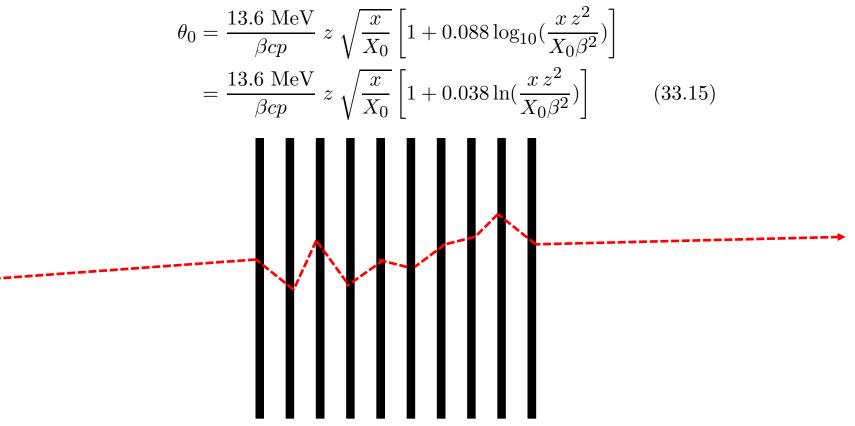
- la media dell'angolo di deflessione è nulla: $<\theta>=0$
- la "divergenza", invece, è non nulla: $\theta^{rms} \neq 0$
- approssimazione gaussiana

Scattering Multiplo

If we define

$$\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}} ,$$
(33.14)

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of the projected angular distribution, with an rms width given by Lynch & Dahl [39]:



Nel passaggio di una particella carica attraverso la materia viene depositata dell'energia (ionizzazione), rivelabile ed utilizzabile per rivelare la particella e misurare delle sue proprietà

The mean rate of energy loss by moderately relativistic charged heavy particles is well-described by the "Bethe equation,"

$$\left\langle -\frac{dE}{dx}\right\rangle = K z^2 \frac{1}{A\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right].$$
(33.5)

It describes the mean rate of energy loss in the region $0.1 \lesssim \beta \gamma \lesssim 1000$

Nel passaggio di una particella carica attraverso la materia viene depositata dell'energia (ionizzazione), rivelabile ed utilizzabile per rivelare la particella e misurare delle sue proprietà

•nel silicio vengono generate ~ 80 coppie elettrone-lacuna, <u>in</u> <u>media*</u>, per μ m di materiale attraversato;

•per la generazione di ogni coppia sono richiesti 3.6 eV;

* in realtà 80 è il valore più probabile, mentre e la media è 108
 ** in realtà 80 coppie è il numero standard che si utilizza per particelle al minimo di ionizzazione (i.e. protone a un paio di GeV). Per un elettrone di centinaia di GeV è ~ 120

Il rilascio totale, in un certo spessore, *x*, di materiale, però è solo <u>in</u> <u>media</u> quello descritto.

Il rilascio è soggetto a fluttuazioni descritte ~ da una funzione di Landau (*TMath::Landau(mp, \sigma*)) con *most probable value* quello descritto prima e σ descritto da:

33.2.1. The fwhm of the Landau-Vavilov function is about 4ξ for detectors of moderate thickness. $\rightarrow 4\xi$ significa $\sigma = 2\xi$ where $\xi = (K/2) \langle Z/A \rangle z^2 (x/\beta^2)$ MeV for a detector with a thick

where $\xi = (K/2) \langle Z/A \rangle z^2 (x/\beta^2)$ MeV for a detector with a thickness x in g cm⁻², $K = 4\pi N_A r_e^2 m_e c^2 = 0.307\,075$ MeV mol⁻¹ cm²

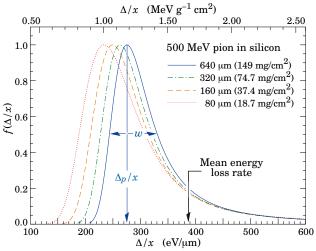
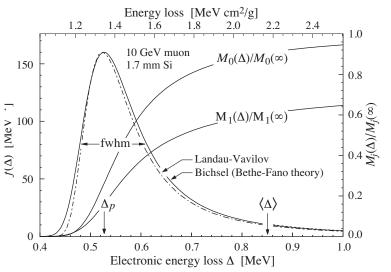


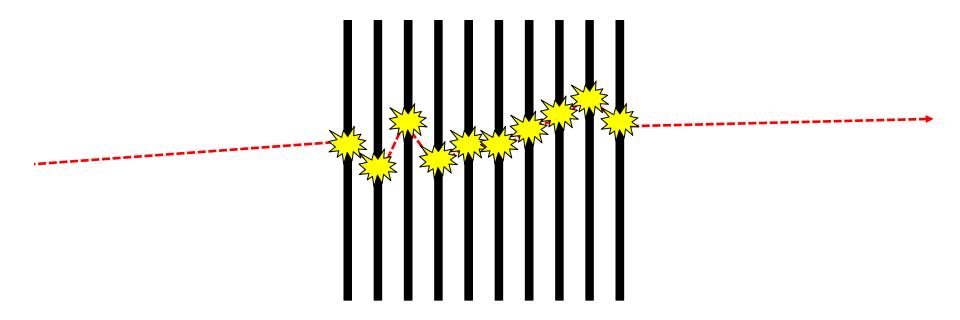
Figure 33.8: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most probable value Δ_p/x . The width w is the full width at half maximum.



La misura dell'energia depositata nel singolo *layer* di Silicio può essere utilizzata per inferire alcune proprietà della particella incidente:

$$\left\langle -\frac{dE}{dx}\right\rangle = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

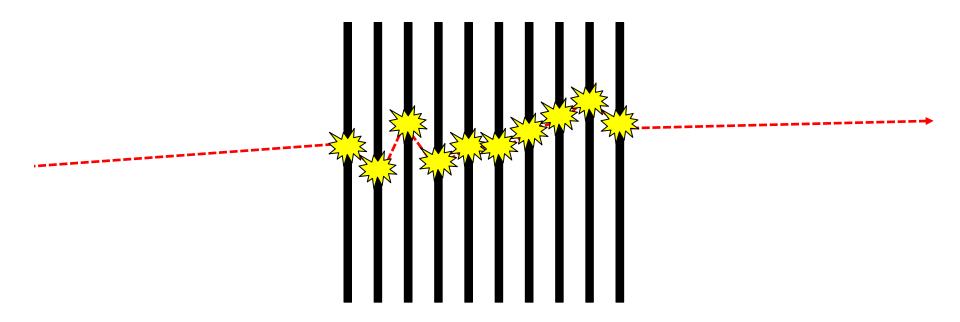
Combinare l'informazione di *N* layer riduce di molto l'effetto delle fluttuazioni e fornisce uno strumento potente per la misura, ad esempio, della carica, *z*, della particella incidente



Inefficienza

Non sempre l'energia depositata dalla particella viene "raccolta" dall'elettronica di lettura (assenza di elettrodi di lettura, zone morte, materiale passivo, etc...) → <u>inefficienza di rivelazione</u>

Simulare, per i piani, un'efficienza di rivelazione del 95%: in media il 95% delle particelle incidenti dà luogo ad un segnale raccolto. Il fenomeno è di tipo binomiale.



La misura dell'energia depositata nel singolo *layer* di Silicio può essere utilizzata per inferire alcune proprietà della particella incidente:

$$\left\langle -\frac{dE}{dx}\right\rangle = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Combinare l'informazione di *N* layer riduce di molto l'effetto delle fluttuazioni e fornisce uno strumento potente per la misura, ad esempio, della carica, *z*, della particella incidente.

Le fluttuazioni, specialmente le lunghe code ad alti valori di ∆E, le possiamo "smorzare" con diversi algoritmi più "furbi", tipo la *media troncata* (il valore più alto viene scartato), nel creare la nostra "carica ricostruita"

 \rightarrow valutare la "risoluzione in carica" (deviazione standard del valore di carica ricostruita su N eventi / media del valore di carica ricostruita su N eventi) con un ToyMC

Sciame elettromagnetico

In un calorimetro elettromagnetico una particella come elettrone/positrone o un fotone crea uno sciame elettromagnetico

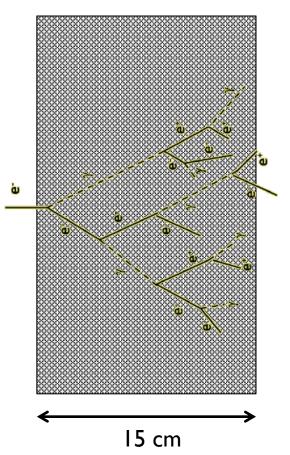
La singola particella inizia a creare "rami" di due particelle:

• l'elettrone/positrone ha una certa probabilità di emettere un fotone per *bremmsstrahlung*

 $e^{\pm} \rightarrow e^{\pm} + \gamma$

• il fotone ha una certa probabilità di fare pairproduction

Calorimetro di BGO



 $\gamma \rightarrow e^{-} + e^{+}$

In un calorimetro elettromagnetico una particella come elettrone/positrone o un fotone crea uno sciame elettromagnetico

La sezione d'urto per la creazione di una coppia $e^{-}e^{+}$ è:

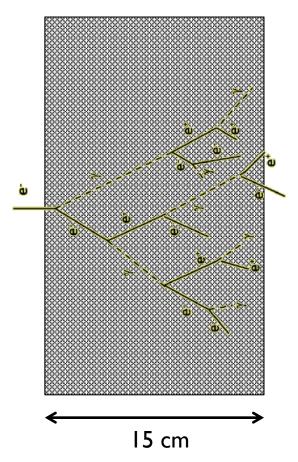
 $\sigma = \frac{7}{9}(A/X_0N_A)$

 $(X_0 \text{ è la "radiation lenght", in g cm⁻²})$ cioè di un flusso di fotoni iniziale I_0 , dopo un percorso lungo *x*, avremo un flusso residuo

$$I(x) = I_0 e^{-\mu x}$$

dove $\mu = \sigma n = \sigma \rho N_A / A = 7/9 \rho / X_0$ (cioè il cammino libero medio, λ , è 9/7 $X_{0/\rho}$)

Calorimetro di BGO



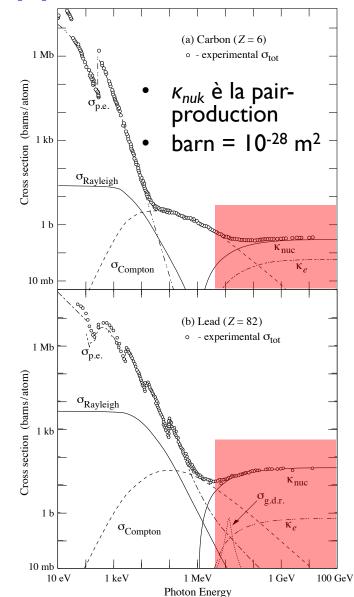
La produzione di coppie la possiamo simulare quindi in due modi:

step fisso e si randomizza il numero (0 o
I) di fotoni che hanno interagito:

$$< N_{int} > = I - e^{-\mu x}$$

si randomizza la dimensione dello step, x, alla fine del quale avviene un'interazione.
La probabilità di avere un'interazione sarà infatti:

$$P_{int}(x) = e^{-\mu x}$$



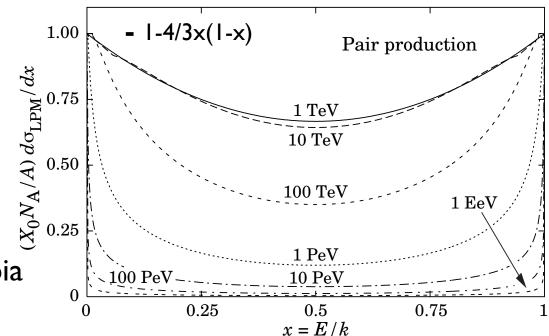
La sezione d'urto totale è (ad energie del GeV e TeV):

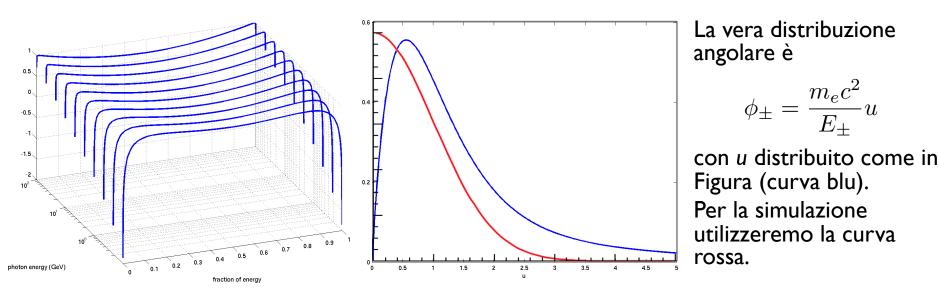
$$\sigma = \frac{7}{9}(A/X_0 N_A)$$

ma ha una dipendenza dalla frazione di energia passata a e⁺ e e⁻:

 $\frac{d\sigma}{dx} = \frac{A}{X_0 N_A} \left[1 - \frac{4}{3} x (1 - x) \right] \quad \text{(integrata in x in [0, 1] dà 7/9 A/X_0 N_A)}$

dove x = E/k è, appunto, il rapporto fra l'energia, *E*, ceduta ad uno dei due e⁺ o e⁻ della coppia, e l'energia iniziale, *k*, del fotone. La formula è ovviamente simmetrica per *x* e *I*-*x*, dato che se uno dei due della coppia prende *E*, l'altro prenderà *k*-*E*





* R.Morris, J.Cohen-Tanugi "Event Analysis for the Gamma-ray Large Area Space Telescope" https://slideplayer.com/slide/5321463

La distribuzione angolare è abbastanza complessa e vincolata a quella energetica. Per determinarla, anche con diverse approssimazioni, servirebbe utilizzare la cinematica relativistica.

Ci accontentiamo di utilizzare una distribuzione gaussiana (rossa) con:

- $<\theta>=0$
- $\sigma_{\theta} = m_{e}/E$ (m_e è la massa dell'elettrone [facile trovarla già in eV...])
- e poi generare un φ uniforme per "distribuire" fra θ_x e θ_y

In un calorimetro elettromagnetico una particella come elettrone/positrone o un fotone crea uno sciame elettromagnetico

In modo analogo alla produzione di coppie, si può descrivere la bremmsstrahlung, con sezione d'urto totale (**) (sempre ad energie del GeV e del TeV):

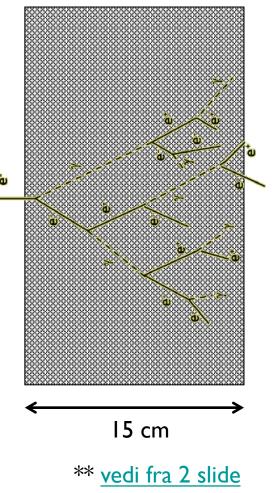
 $\sigma \approx (A/X_0 N_A)$

(leggermente maggiore che nel caso della pairproduction) e sezione d'urto differenziale nell' energia del fotone emesso:

$$\frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$

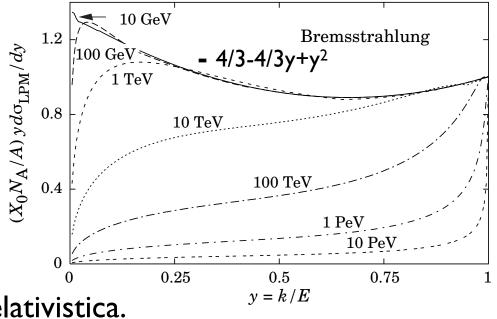
(con y = k/E, dove k è l'energia presa dal fotone rispetto all'energia iniziale dell'elettrone, E)

Calorimetro di BGO



$$\frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$

Anche in questo caso la dipendenza angolare sarebbe vincolata da quella in energia e la cosa si risolve, con qualche approssimazione, analiticamente



Per semplicità, anche qui facciamo una simulazione gaussiana, con: • $\langle \theta \rangle = 0$

σ_θ= m_e/E (m_e è la massa dell'elettrone [facile trovarla già in eV...])
e poi generare un φ uniforme per "distribuire" fra θ_x e θ_y

$$\frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$

che equivale a:

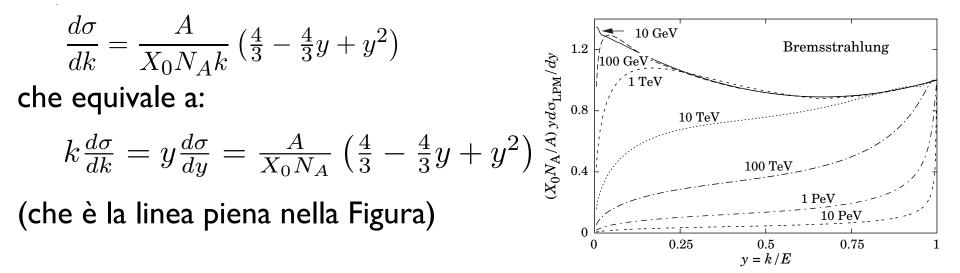
$$k \frac{d\sigma}{dk} = y \frac{d\sigma}{dy} = \frac{A}{X_0 N_A} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$
(che è la linea piena nella Figura) oppure

$$E \frac{d\sigma}{dk} = \frac{d\sigma}{dy} = \frac{A}{X_0 N_A} \frac{1}{y} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$

La sezione d'urto ha una <u>divergenza</u> ("infrarossa") per y=0: escono tantissimi fotoni di bassissima energia ("soft"). Nella simulazione, quindi: • $d\sigma/dy$ è la distribuzione da cui "estrarre" i valori di y

• dovremo "trascurare" tutti questi fotoni di bassissima energia.

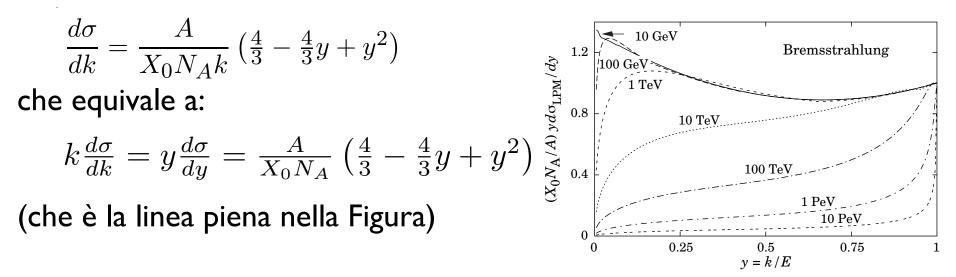
Utilizziamo quindi l'approssimazione descritta nelle 2 prossime slide.



Si può dimostrare che il numero di fotoni emessi, attraversando una distanza uguale ad una lunghezza di radiazione, con un'energia che è una frazione non trascurabile (>1/3) dell'energia dell'elettrone, è ~ 1: attraversando una lunghezza di radiazione vengono emessi molti fotoni ma solamente uno è "energetico" ("hard"). Questo, in parole povere significa che:

 $\sigma \approx (A/X_0 N_A)$

(dove per σ stiamo considerando solo il processo con fotone "hard")



Quindi:

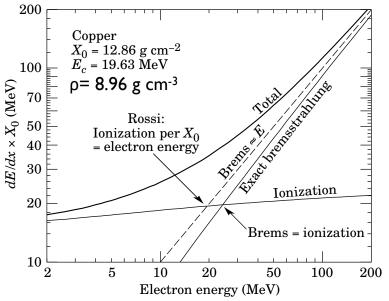
- a. se il valore estratto di y è <1/3 \rightarrow il fotone è "soft"
- b. se il fotone è soft dobbiamo generarne altri finché non "esce" quello "hard" (o l'elettrone non finisce l'energia...)
- c. se il fotone "soft" è sotto l'energia critica interrompiamo la propagazione di quel ramo di sciame e consideriamo tutta l'energia depositata
- d. se il fotone "soft" è sopra l'energia critica dobbiamo propagarlo, ma continuare anche con il punto b

Sciame elettromagnetico

Nonostante attraversando il materiale l'elettrone/positrone perda energia principalmente per bremmsstrahlung, la ionizzazione (come quando attraversa il Silicio) rimane presente.

Per semplicità assumiamo che perda un'energia indipendente dalla sua energia totale:

$$dE/dx \sim 1.6 \text{ MeV g}^{-1} \text{ cm}^2 \rho$$



che, ad esempio, per il Rame (Copper, in figura), vale 14 MeV/cm, cioè ~ 20 MeV per lunghezza di radiazione, ~ 1.4 cm $(dE/d(x/X_0) = X_0 dE/dx)$.

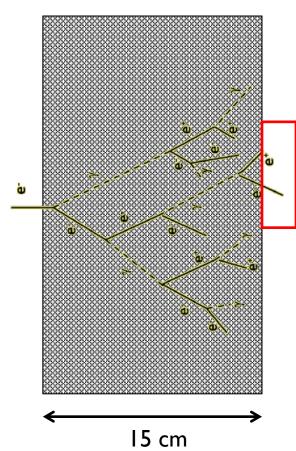
Al di sotto dell'energia critica (sempre tabulata [ignorare le differenze per e⁺ e e⁻]) la perdita dominante è per ionizzazione: possiamo interrompere lo "sviluppo" di quel ramo di sciame e considerare "depositata" tutta l'energia in pochi mm

Sciame elettromagnetico

In un calorimetro elettromagnetico una particella come elettrone/positrone o un fotone crea uno sciame elettromagnetico

→ simulare lo sviluppo dello sciame con un'
"alta" statistica di particelle incidenti
→ valutare quanta è, in media, la frazione dell'energia dello sciame che viene persa poiché non tutte le particelle dello sciame rimangono fino alla perdita totale di energia dentro il calorimetro

Calorimetro di BGO



Sviluppo dello sciame

The longitudinal distribution of the energy deposition in electromagnetic cascades is reasonably described by an approximation based on the Monte Carlo programme EGS [6, 7],

$$\frac{\mathrm{d}E}{\mathrm{d}t} = E_0 b \frac{(bt)^{a-1} \,\mathrm{e}^{-bt}}{\Gamma(a)} \quad , \tag{8.7}$$

where $\Gamma(a)$ is Euler's Γ function, defined by

$$\Gamma(g) = \int_0^\infty \mathrm{e}^{-x} x^{g-1} \,\mathrm{d}x \ .$$

The gamma function has the property

$$\Gamma(g+1) = g \Gamma(g)$$
.

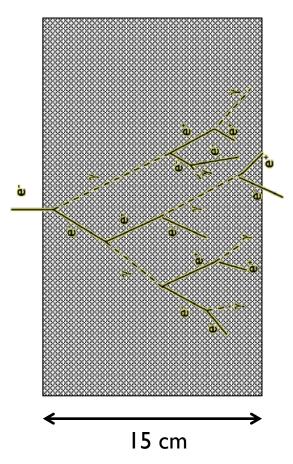
Here a and b are model parameters and E_0 is the energy of the incident particle. In this approximation the maximum of the shower development is reached at

$$t_{\max} = \frac{a-1}{b} = \ln\left(\frac{E_0}{E_c}\right) + C_{\gamma e} \quad , \tag{8.10}$$

where $C_{\gamma e} = 0.5$ for a gamma-induced shower and $C_{\gamma e} = -0.5$ for an incident electron. The parameter *b* as obtained from simulation results is $b \approx 0.5$ for heavy absorbers from iron to lead. Then the energy-dependent parameter *a* can be derived from Eq. (8.10).

 $t=x/X_0$, E_0 è l'energia iniziale (dell'elettrone), E_c l'energia critica

Calorimetro di BGO



(8.8)

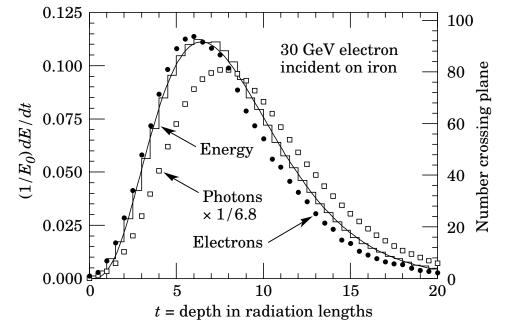
(8.9)

Sviluppo dello sciame

$$\frac{\mathrm{d}E}{\mathrm{d}t} = E_0 b \frac{(bt)^{a-1} \,\mathrm{e}^{-bt}}{\Gamma(a)}$$

(TMath::Gamma(Double_t z))

che descrive uno sviluppo "longitudinale" come quello in figura.



- → integrare l'equazione differenziale sopra per ottenere E(t) e integrare questa fino al numero di t corrispondente a 15 cm di BGO. Calcolare la frazione di energia contenuta nel calorimetro e quella "persa" e confrontare questo risultato con quello ottenuto col ToyMC
- → (facoltativo) confrontare anche lo sviluppo vs t (i.e. quello in figura) fra ToyMC e funzione analitica. (Ricorda: l'istogramma della grandezza N(x) in bin di x descrive proprio dN(x)/dx)

Programma e relazione

- Il programma scritto dovrà essere accompagnato da opportuno Makefile e istruzioni (se sono più di tre righe c'è un problema!) di come compilarlo ed eseguirlo e come guardare i risultati (terminale, root file da aprire o immagini salvate su disco);
- Il programma scritto dovrà essere accompagnato da una relazione che descriva le scelte fatte e i risultati ottenuti, ma che sia anche sintetica