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Tracker + calorimetro elettromagnetico

10 m

“beam pipe”



Beam

“beam pipe”

• beam “spot”: σ~ 1cm (X e Y), gaussiana 
• divergenza beam: σ~ 10 μrad (θx e θy), gaussiana

• elettroni (β= v/c ~1)
• momento: 180 GeV/c



Scattering Multiplo

Interazioni Coulombiane con gli atomi del materiale deviano la 
traiettoria della particella con un “cammino dell’ubriaco”

• la media dell’angolo di deflessione è nulla: <θ> = 0
• la “divergenza”, invece, è non nulla: θrms ≠ 0
• approssimazione gaussiana
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the
mean loss of a minimum ionizing particle, 388 eV/µm (1.66 MeV
g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,

〈

dE

dx

〉

=
∑

wj

〈

dE

dx

〉

j

, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:
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(33.15)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the
mean loss of a minimum ionizing particle, 388 eV/µm (1.66 MeV
g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,
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where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
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njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define
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then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:
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Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.
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particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB

is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Fig. 33.1: Mass stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 −

δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼βγ <∼1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, ⟨−dE/dx⟩ defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is ⟨−dE/dx⟩ ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes ⟨dE/dx⟩ in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as ⟨dE/dx⟩.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples

Nel passaggio di una particella carica attraverso la materia viene 
depositata dell’energia (ionizzazione), rivelabile ed utilizzabile per 

rivelare la particella e misurare delle sue proprietà



Misura di carica
Nel passaggio di una particella carica attraverso la materia viene 
depositata dell’energia (ionizzazione), rivelabile ed utilizzabile per 

rivelare la particella e misurare delle sue proprietà
•nel silicio vengono generate ~ 80 coppie elettrone-lacuna, in 
media*, per μm di materiale attraversato;
•per la generazione di ogni coppia sono richiesti 3.6 eV;

* in realtà 80 è il valore più probabile, mentre e la media è 108
** in realtà 80 coppie è il numero standard che si utilizza per particelle al minimo di 
ionizzazione (i.e. protone a un paio di GeV). Per un elettrone di centinaia di GeV è ~ 120
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33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−
dE

dx

∣

∣

∣

∣

T<Wcut

= Kz2Z
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1

β2

[

1

2
ln
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2β2γ2Wcut

I2

−
β2

2

(

1 +
Wcut

Wmax

)

−
δ

2

]

. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel Δp/x for :

Bethe
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a ln x + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a ln x + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.

450 33. Passage of particles through matter

33.2.8. Restricted energy

loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−
dE

dx

∣
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∣

∣
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Wmax

)

−
δ

2

]

. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel Δp/x for :
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a ln x + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a ln x + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.
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Figure 33.8: Straggling functions in silicon for 500 MeV pions,
normalized to unity at the most probable value ∆p/x. The width
w is the full width at half maximum.

most probable E loss rate to the mean loss rate via the Bethe equation
is [0.69, 0.57, 0.49, 0.42, 0.38] for Tµ = [0.01, 0.1, 1, 10, 100] GeV.
Radiative losses add less than 0.5% to the total mean energy deposit
at 10 GeV, but add 7% at 100 GeV. The most probable E loss rate
rises slightly beyond the minimum ionization energy, then is essentially
constant.

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [26], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [27]. While ∆p/x may be calculated adequately with
Eq. (33.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 26, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 33.8. For very thick
absorbers the distribution is less skewed but never approaches a
Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 33.9 for several silicon detector thicknesses.
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Figure 33.9: Most probable energy loss in silicon, scaled to the
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g−1cm2).

33.2.10. Energy loss in mixtures and compounds :

A mixture or compound can be thought of as made up of thin
layers of pure elements in the right proportion (Bragg additivity). In
this case,

〈

dE

dx

〉

=
∑

wj

〈

dE

dx

〉

j

, (33.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2)
in the jth element. Eq. (33.5) can be inserted into Eq. (33.13) to
find expressions for ⟨Z/A⟩, ⟨I ⟩, and ⟨δ⟩; for example, ⟨Z/A⟩ =
∑

wjZj/Aj =
∑

njZj/
∑

njAj . However, ⟨I ⟩ as defined this way is

an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and ⟨δ⟩ as calculated this way has little
relevance, because it is the electron density that matters. If possible,
one uses the tables given in Refs. 16 and 29, that include effective exci-
tation energies and interpolation coefficients for calculating the density
effect correction for the chemical elements and nearly 200 mixtures and
compounds. Otherwise, use the recipe for δ given in Ref. 5 and 17, and
calculate ⟨I⟩ following the discussion in Ref. 10. (Note the “13%” rule!)

33.2.11. Ionization yields :

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 30. The mean local energy dissipation per local
ion pair produced, W , while essentially constant for relativistic
particles, increases at slow particle speeds [31]. For gases, W can be
surprisingly sensitive to trace amounts of various contaminants [31].
Furthermore, ionization yields in practical cases may be greatly
influenced by such factors as subsequent recombination [32].

33.3. Multiple scattering through small angles
A charged particle traversing a medium is deflected by many small-

angle scatters. Most of this deflection is due to Coulomb scattering
from nuclei as described by the Rutherford cross section. (However,
for hadronic projectiles, the strong interactions also contribute to
multiple scattering.) For many small-angle scatters the net scattering
and displacement distributions are Gaussian via the central limit
theorem. Less frequent “hard” scatters produce non-Gaussian tails.
These Coulomb scattering distributions are well-represented by the
theory of Molière [34]. Accessible discussions are given by Rossi [2]
and Jackson [33], and exhaustive reviews have been published
by Scott [35] and Motz et al. [36]. Experimental measurements
have been published by Bichsel [37]( low energy protons) and by
Shen et al. [38]( relativistic pions, kaons, and protons).*

If we define

θ0 = θ rms
plane =

1
√

2
θrms
space , (33.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
an rms width given by Lynch & Dahl [39]:

θ0 =
13.6 MeV

βcp
z

√

x

X0

[

1 + 0.088 log10(
x z2

X0β2
)

]

=
13.6 MeV

βcp
z

√

x

X0

[

1 + 0.038 ln(
x z2

X0β2
)

]

(33.15)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small
x the β-dependence is not well represented. Further improvements are
discussed in Ref. 39.

Eq. (33.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (33.15) once, after finding x and X0 for the
combined scatterer.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [34]
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dΩ , (33.16)
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dθplane , (33.17)

* Shen et al.’s measurements show that Bethe’s simpler methods of
including atomic electron effects agrees better with experiment than
does Scott’s treatment.
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loss rates for relativistic ionizing particles : Further insight
can be obtained by examining the mean energy deposit by an ionizing
particle when energy transfers are restricted to T ≤ Wcut ≤ Wmax.
The restricted energy loss rate is

−
dE

dx

∣

∣

∣
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T<Wcut
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[
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2
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)

−
δ

2

]

. (33.10)

This form approaches the normal Bethe function (Eq. (33.5)) as
Wcut → Wmax. It can be verified that the difference between
Eq. (33.5) and Eq. (33.10) is equal to

∫ Wmax

Wcut
T (d2N/dTdx)dT , where

d2N/dTdx is given by Eq. (33.8).

Landau/Vavilov/Bichsel Δp/x for :
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Figure 33.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a ln x + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

Since Wcut replaces Wmax in the argument of the logarithmic
term of Eq. (33.5), the βγ term producing the relativistic rise in
the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Wcut

approaches the constant “Fermi plateau.” (The
density effect correction δ eliminates the explicit βγ dependence
produced by the distant-collision contribution.) This behavior is
illustrated in Fig. 33.6, where restricted loss rates for two examples
of Wcut are shown in comparison with the full Bethe dE/dx and
the Landau-Vavilov most probable energy loss (to be discussed in
Sec. 33.2.9 below).

“Restricted energy loss” is cut at the total mean energy, not the
single-collision energy above Wcut It is of limited use. The most
probable energy loss, discussed in the next Section, is far more useful
in situations where single-particle energy loss is observed.

33.2.9. Fluctuations in energy loss :

For detectors of moderate thickness x (e.g. scintillators or
LAr cells),* the energy loss probability distribution f(∆; βγ, x) is
adequately described by the highly-skewed Landau (or Landau-
Vavilov) distribution [24,25]. The most probable energy loss is [26]
†

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ(βγ)

]

, (33.11)

* “Moderate thickness” means G <∼ 0.05–0.1, where G is given by
Rossi [Ref. 2, Eq. 2.7(10)]. It is Vavilov’s κ [25]. G is proportional to
the absorber’s thickness, and as such parameterizes the constants de-
scribing the Landau distribution. These are fairly insensitive to thick-
ness for G <∼0.1, the case for most detectors.

† Practical calculations can be expedited by using the tables of δ and
β from the text versions of the muon energy loss tables to be found at
pdg.lbl.gov/AtomicNuclearProperties.

where ξ = (K/2) ⟨Z/A⟩ z2(x/β2) MeV for a detector with a thickness
x in g cm−2, and j = 0.200 [26]. ‡ While dE/dx is independent of
thickness, ∆p/x scales as a ln x + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [26]. The high-energy behavior of δ(βγ) (Eq. (33.6)) is
such that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ

(!ωp)2
+ j

]

. (33.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 33.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.
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Figure 33.7: Electronic energy deposit distribution for a
10 GeV muon traversing 1.7 mm of silicon, the stopping power
equivalent of about 0.3 cm of PVT-based scintillator [1,13,28].
The Landau-Vavilov function (dot-dashed) uses a Rutherford
cross section without atomic binding corrections but with a
kinetic energy transfer limit of Wmax. The solid curve was
calculated using Bethe-Fano theory. M0(∆) and M1(∆) are
the cumulative 0th moment (mean number of collisions) and
1st moment (mean energy loss) in crossing the silicon. (See
Sec. 33.2.1. The fwhm of the Landau-Vavilov function is about
4ξ for detectors of moderate thickness. ∆p is the most probable
energy loss, and ⟨∆⟩ divided by the thickness is the Bethe
⟨dE/dx⟩.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 33.7. In this case the most probable energy loss is 62% of the
mean (M1(⟨∆⟩)/M1(∞)). Folding in experimental resolution displaces
the peak of the distribution, usually toward a higher value. 90% of
the collisions (M1(⟨∆⟩)/M1(∞)) contribute to energy deposits below
the mean. It is the very rare high-energy-transfer collisions, extending
to Wmax at several GeV, that drives the mean into the tail of the
distribution. The large weight of these rare events makes the mean
of an experimental distribution consisting of a few hundred events
subject to large fluctuations and sensitive to cuts. The mean of the
energy loss given by the Bethe equation, Eq. (33.5), is thus ill-defined
experimentally and is not useful for describing energy loss by single
particles.♮ It rises as ln γ because Wmax increases as γ at high energies.
The most probable energy loss should be used.

A practical example: For muons traversing 0.25 inches (0.64 cm)
of PVT (polyvinyltolulene) based plastic scintillator, the ratio of the

‡ Rossi [2], Talman [27], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

♮ It does find application in dosimetry, where only bulk deposit is
relevant.

Il rilascio totale, in un certo spessore, x, di materiale, però è solo in 
media quello descritto.

Il rilascio è soggetto a fluttuazioni descritte ~ da una funzione di 
Landau (TMath::Landau(mp,σ)) con most probable value quello 

descritto prima eσ descritto da:

à 4ξ significa σ= 2ξ
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Revised August 2015 by H. Bichsel (University of Washington), D.E.
Groom (LBNL), and S.R. Klein (LBNL).

This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation
The notation and important numerical values are shown in

Table 33.1.

Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.

Symbol Definition Value or (usual) units

mec
2 electron mass × c2 0.510 998 9461(31) MeV

re classical electron radius
e2/4πϵ0mec

2 2.817 940 3227(19) fm

α fine structure constant
e2/4πϵ0!c 1/137.035 999 139(31)

NA Avogadro’s number 6.022 140 857(74)× 1023 mol−1

ρ density g cm−3

x mass per unit area g cm−2

M incident particle mass MeV/c2

E incident part. energy γMc2 MeV
T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV
in a single collision

k bremsstrahlung photon energy MeV
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber g mol−1

K 4πNAr2
emec

2 0.307 075 MeV mol−1 cm2

(Coefficient for dE/dx)

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss

!ωp plasma energy
√

ρ ⟨Z/A⟩ × 28.816 eV
√

4πNer3
e mec

2/α |−→ ρ in g cm−3

Ne electron density (units of re)−3

wj weight fraction of the jth element in a compound or mixture

nj ∝number of jth kind of atoms in a compound or mixture

X0 radiation length g cm−2

Ec critical energy for electrons MeV
Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2

33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”
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This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation
The notation and important numerical values are shown in
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Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.
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E incident part. energy γMc2 MeV
T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV
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k bremsstrahlung photon energy MeV
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber g mol−1

K 4πNAr2
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2 0.307 075 MeV mol−1 cm2
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ρ ⟨Z/A⟩ × 28.816 eV
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√
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33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”
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This review covers the interactions of photons and electrically
charged particles in matter, concentrating on energies of interest
for high-energy physics and astrophysics and processes of interest
for particle detectors (ionization, Cherenkov radiation, transition
radiation). Much of the focus is on particles heavier than electrons
(π±, p, etc.). Although the charge number z of the projectile is
included in the equations, only z = 1 is discussed in detail. Muon
radiative losses are discussed, as are photon/electron interactions at
high to ultrahigh energies. Neutrons are not discussed.

33.1. Notation
The notation and important numerical values are shown in

Table 33.1.

Table 33.1: Summary of variables used in this section.
The kinematic variables β and γ have their usual relativistic
meanings.

Symbol Definition Value or (usual) units
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α fine structure constant
e2/4πϵ0!c 1/137.035 999 139(31)

NA Avogadro’s number 6.022 140 857(74)× 1023 mol−1
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x mass per unit area g cm−2
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E incident part. energy γMc2 MeV
T kinetic energy, (γ − 1)Mc2 MeV

W energy transfer to an electron MeV
in a single collision

k bremsstrahlung photon energy MeV
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber g mol−1

K 4πNAr2
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2 0.307 075 MeV mol−1 cm2

(Coefficient for dE/dx)

I mean excitation energy eV (Nota bene!)

δ(βγ) density effect correction to ionization energy loss
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ρ ⟨Z/A⟩ × 28.816 eV
√

4πNer3
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2/α |−→ ρ in g cm−3
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wj weight fraction of the jth element in a compound or mixture

nj ∝number of jth kind of atoms in a compound or mixture
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Ec critical energy for electrons MeV
Eµc critical energy for muons GeV

Es scale energy
√

4π/α mec
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33.2. Electronic energy loss by heavy particles [1–33]

33.2.1. Moments and cross sections :

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses W [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 33.2.9 below.
For particles with charge ze more massive than electrons (“heavy”

=                   =



Misura di carica
La misura dell’energia depositata nel singolo layer di Silicio può 
essere utilizzata per inferire alcune proprietà della particella 

incidente: 

Combinare l’informazione di N layer riduce di molto l’effetto delle 
fluttuazioni e fornisce uno strumento potente per la misura, ad 

esempio, della carica, z, della particella incidente   
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particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],

dσR(W ; β)

dW
=

2πr2
emec

2z2

β2

(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB

is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.
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Fig. 33.1: Mass stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 −

δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼βγ <∼1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, ⟨−dE/dx⟩ defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is ⟨−dE/dx⟩ ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes ⟨dE/dx⟩ in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as ⟨dE/dx⟩.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples



Inefficienza
Non sempre l’energia depositata dalla particella viene “raccolta”

dall’elettronica di lettura (assenza di elettrodi di lettura, zone 
morte, materiale passivo, etc...) à inefficienza di rivelazione

Simulare, per i piani, un’efficienza di rivelazione del 95%: in media il 
95% delle particelle incidenti dà luogo ad un segnale raccolto.

Il fenomeno è di tipo binomiale.



Misura di carica
La misura dell’energia depositata nel singolo layer di Silicio può 
essere utilizzata per inferire alcune proprietà della particella 

incidente: 

Combinare l’informazione di N layer riduce di molto l’effetto delle 
fluttuazioni e fornisce uno strumento potente per la misura, ad 

esempio, della carica, z, della particella incidente.

Le fluttuazioni, specialmente le lunghe code ad alti valori di ΔE, le 
possiamo “smorzare” con diversi algoritmi più “furbi”, tipo la media 

troncata (il valore più alto viene scartato), nel creare la nostra 
“carica ricostruita”

à valutare la “risoluzione in carica” (deviazione standard del 
valore di carica ricostruita su N eventi / media del valore di carica 
ricostruita su N eventi) con un ToyMC
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particles), scattering from free electrons is adequately described by
the Rutherford differential cross section [2],
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dW
=
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(1 − β2W/Wmax)

W 2
, (33.1)

where Wmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. W must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB(W ; β)

dW
=

dσR(W, β)

dW
B(W ) . (33.2)

Electronic binding is accounted for by the correction factor B(W ).
Examples of B(W ) and dσB/dW can be seen in Figs. 5 and 6 of
Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects are not important. The free-electron cross section (Eq. (33.1))
can be used to extend the cross section to Wmax. At high energies σB

is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 33.2.5, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between W and
W + dW occurring in a distance δx is Neδx (dσ/dW )dW , where
dσ(W ; β)/dW contains all contributions. It is convenient to define the
moments

Mj(β) = Ne δx

∫

W j dσ(W ; β)

dW
dW , (33.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, (M2 − M1)2 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.

Muon momentum

1

10

100

M
as

s s
to

pp
in

g 
po

w
er

 [M
eV

 c
m

2 /
g]

Li
nd

ha
rd

-
Sc

ha
rf

f

Bethe Radiative

Radiative
effects

reach 1%

Without δ

Radiative
losses

βγ
0.001 0.01 0.1 1 10 100

1001010.1

1000 104 105

[MeV/c]
100101

[GeV/c]
100101

[TeV/c]

Minimum
ionization

Eµc

Nuclear
losses

µ−
µ+ on Cu

Anderson-
Ziegler

Fig. 33.1: Mass stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a
function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of
magnitude in kinetic energy). Solid curves indicate the total stopping power. Data
below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies
are from Ref. 5. Vertical bands indicate boundaries between different approximations
discussed in the text. The short dotted lines labeled “µ− ” illustrate the “Barkas
effect,” the dependence of stopping power on projectile charge at very low energies [6].
dE/dx in the radiative region is not simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax =
2mec

2 β2γ2, valid for 2γme ≪ M , is often implicit. For a pion in

copper, the error thus introduced into dE/dx is greater than 6% at
100 GeV. For 2γme ≫ M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer
to the electron can exceed 1 GeV/c, where hadronic structure
effects significantly modify the cross sections. This problem has been
investigated by J.D. Jackson [9], who concluded that for hadrons (but
not for large nuclei) corrections to dE/dx are negligible below energies
where radiative effects dominate. While the cross section for rare hard
collisions is modified, the average stopping power, dominated by many
softer collisions, is almost unchanged.

33.2.3. Stopping power at intermediate energies :

The mean rate of energy loss by moderately relativistic charged
heavy particles is well-described by the “Bethe equation,”

〈

−
dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Wmax

I2
− β2 −

δ(βγ)

2

]

.

(33.5)
It describes the mean rate of energy loss in the region 0.1 <∼βγ <∼1000
for intermediate-Z materials with an accuracy of a few percent.

This is the mass stopping power ; with the symbol definitions and
values given in Table 33.1, the units are MeV g−1cm2. As can be seen
from Fig. 33.2, ⟨−dE/dx⟩ defined in this way is about the same for
most materials, decreasing slowly with Z. The linear stopping power,
in MeV/cm, is ⟨−dE/dx⟩ ρ, where ρ is the density in g/cm3.

Wmax is defined in Sec. 33.2.2. At the lower limit the projec-
tile velocity becomes comparable to atomic electron “velocities”
(Sec. 33.2.6), and at the upper limit radiative effects begin to
be important (Sec. 33.6). Both limits are Z dependent. A minor
dependence on M at the highest energies is introduced through Wmax,
but for all practical purposes ⟨dE/dx⟩ in a given material is a function
of β alone.

Few concepts in high-energy physics are as misused as ⟨dE/dx⟩.
The main problem is that the mean is weighted by very rare events

with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss
cannot be obtained. Far better and more easily measured is the most
probable energy loss, discussed in Sec. 33.2.9. The most probable
energy loss in a detector is considerably below the mean given by the
Bethe equation.

In a TPC (Sec. 34.6.5), the mean of 50%–70% of the samples



Sciame elettromagnetico

15 cm

Calorimetro di BGO

In un calorimetro elettromagnetico una 
particella come elettrone/positrone o un 
fotone crea uno sciame elettromagnetico

La singola particella inizia a creare “rami” di 
due particelle:

• l’elettrone/positrone ha una certa probabilità 
di emettere un fotone per bremmsstrahlung

e�à e� + γ

• il fotone ha una certa probabilità di fare pair-
production

γ à e- + e+



Produzione di coppie

15 cm

Calorimetro di BGO

In un calorimetro elettromagnetico una 
particella come elettrone/positrone o un 
fotone crea uno sciame elettromagnetico

La sezione d’urto per la creazione di una 
coppia e--e+ è:

(X0 è la “radiation lenght”, in g cm-2)
cioè di un flusso di fotoni iniziale I0, dopo un 
percorso lungo x, avremo un flusso residuo

I(x) = I0 e-μx

dove μ = σn = σρNA/A = 7/9 ρ/X0

(cioè il cammino libero medio, λ, è 9/7 X0/ρ)
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Figure 33.19: The photon mass attenuation length (or mean free path) λ = 1/(µ/ρ) for various elemental absorbers as a function
of photon energy. The mass attenuation coefficient is µ/ρ, where ρ is the density. The intensity I remaining after traversal of
thickness t (in mass/unit area) is given by I = I0 exp(−t/λ). The accuracy is a few percent. For a chemical compound or mixture,
1/λeff ≈

∑

elements wZ/λZ , where wZ is the proportion by weight of the element with atomic number Z. The processes responsible for
attenuation are given in Fig. 33.11. Since coherent processes are included, not all these processes result in energy deposition. The data for
30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants (courtesy of Eric M. Gullikson, LBNL). The data
for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

The increasing domination of pair production as the energy
increases is shown in Fig. 33.16. Using approximations similar to
those used to obtain Eq. (33.30), Tsai’s formula for the differential
cross section [42] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between x and 1 − x, as can be seen by the solid curve in
Fig. 33.17. See the review by Motz, Olsen, & Koch for a more detailed
treatment [52].

Eq. (33.32) may be integrated to find the high-energy limit for the
total e+e− pair-production cross section:

σ = 7
9(A/X0NA) . (33.33)

Equation Eq. (33.33) is accurate to within a few percent down to
energies as low as 1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high en-
ergies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of
quantum mechanical interference between amplitudes from different
scattering centers. Since the longitudinal momentum transfer to a
given center is small (∝ k/E(E − k), in the case of bremsstrahlung),
the interaction is spread over a comparatively long distance called
the formation length (∝ E(E − k)/k) via the uncertainty principle.
In alternate language, the formation length is the distance over
which the highly relativistic electron and the photon “split apart.”
The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically
based on the average multiple scattering, or more rigorously using a
quantum transport approach [44,45].

In amorphous media, bremsstrahlung is suppressed if the photon

energy k is less than E2/(E + ELPM ) [45], where*

ELPM =
(mec

2)2αX0

4π!cρ
= (7.7 TeV/cm) ×

X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, k dσLPM/dk,
is shown in Fig. 33.12. With appropriate scaling by X0/ρ, other
materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM .
The pair-production cross sections for different photon energies are
shown in Fig. 33.17.

If k ≪ E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because
of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed
by a factor (kme/ωpE)2 [47]. Magnetic fields can also suppress
bremsstrahlung.

In crystalline media, the situation is more complicated, with
coherent enhancement or suppression possible. The cross section
depends on the electron and photon energies and the angles between
the particle direction and the crystalline axes [54].

33.4.7. Photonuclear and electronuclear interactions at still
higher energies :

At still higher photon and electron energies, where the bremsstrah-
lung and pair production cross-sections are heavily suppressed by the
LPM effect, photonuclear and electronuclear interactions predominate
over electromagnetic interactions.

At photon energies above about 1020eV, for example, photons
usually interact hadronically. The exact cross-over energy depends
on the model used for the photonuclear interactions. These processes
are illustrated in Fig. 33.18. At still higher energies (>∼ 1023eV),

* This definition differs from that of Ref. 53 by a factor of two.
ELPM scales as the 4th power of the mass of the incident particle, so
that ELPM = (1.4 × 1010TeV/cm) × X0/ρ for a muon.



Produzione di coppie
La produzione di coppie la possiamo 
simulare quindi in due modi:

• step fisso e si randomizza il numero (0 o 
1) di fotoni che hanno interagito:

<Nint> = 1 - e-μx

• si randomizza la dimensione dello step, x, 
alla fine del quale avviene un’interazione. 
La probabilità di avere un’interazione sarà 
infatti:

Pint(x) = e-μx

454 33. Passage of particles through matter

The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there
is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 33.14.
Fits were also made with functions of the form a/(Z + b)α, but α
was found to be essentially unity. Since Ec also depends on A, I, and
other factors, such forms are at best approximate.

Values of Ec for both electrons and positrons in more than 300
materials can be found at pdg.lbl.gov/AtomicNuclearProperties.
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Figure 33.15: Photon total cross sections as a function of
energy in carbon and lead, showing the contributions of different
processes [50]:

σp.e. = Atomic photoelectric effect (electron ejection,
photon absorption)

σRayleigh = Rayleigh (coherent) scattering–atom neither
ionized nor excited

σCompton = Incoherent scattering (Compton scattering off an
electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant
Dipole Resonance [51]. In these interactions, the
target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell
(NIST).

33.4.5. Energy loss by photons :

Contributions to the photon cross section in a light element
(carbon) and a heavy element (lead) are shown in Fig. 33.15. At low
energies it is seen that the photoelectric effect dominates, although
Compton scattering, Rayleigh scattering, and photonuclear absorption
also contribute. The photoelectric cross section is characterized by
discontinuities (absorption edges) as thresholds for photoionization
of various atomic levels are reached. Photon attenuation lengths
for a variety of elements are shown in Fig. 33.19, and data for
30 eV< k <100 GeV for all elements are available from the web pages
given in the caption. Here k is the photon energy.

Figure 33.16: Probability P that a photon interaction will
result in conversion to an e+e− pair. Except for a few-percent
contribution from photonuclear absorption around 10 or 20
MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon
attenuation length λ (Fig. 33.19), the probability that a given
photon will produce an electron pair (without first Compton
scattering) in thickness t of absorber is P [1 − exp(−t/λ)].
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Figure 33.17: The normalized pair production cross section
dσLPM/dy, versus fractional electron energy x = E/k.
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Figure 33.18: Interaction length for a photon in ice as a
function of photon energy for the Bethe-Heitler (BH), LPM
(Mig) and photonuclear (γA) cross sections [55]. The Bethe-
Heitler interaction length is 9X0/7, and X0 is 0.393 m in
ice.

• κnuk è la pair-
production

• barn = 10-28 m2



Produzione di coppie
La sezione d’urto totale è (ad energie del GeV e TeV):

ma ha una dipendenza dalla frazione di energia passata a e+ e e-:

(integrata in x in [0,1] dà 7/9 A/X0NA)

dove x = E/k è, appunto, il
rapporto fra l’energia, E,
ceduta ad uno dei due e+ o
e- della coppia, e l’energia
iniziale, k, del fotone.
La formula è ovviamente
simmetrica per x e 1-x, dato
che se uno dei due della coppia
prende E, l’altro prenderà k-E
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Figure 33.19: The photon mass attenuation length (or mean free path) λ = 1/(µ/ρ) for various elemental absorbers as a function
of photon energy. The mass attenuation coefficient is µ/ρ, where ρ is the density. The intensity I remaining after traversal of
thickness t (in mass/unit area) is given by I = I0 exp(−t/λ). The accuracy is a few percent. For a chemical compound or mixture,
1/λeff ≈

∑

elements wZ/λZ , where wZ is the proportion by weight of the element with atomic number Z. The processes responsible for
attenuation are given in Fig. 33.11. Since coherent processes are included, not all these processes result in energy deposition. The data for
30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants (courtesy of Eric M. Gullikson, LBNL). The data
for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

The increasing domination of pair production as the energy
increases is shown in Fig. 33.16. Using approximations similar to
those used to obtain Eq. (33.30), Tsai’s formula for the differential
cross section [42] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between x and 1 − x, as can be seen by the solid curve in
Fig. 33.17. See the review by Motz, Olsen, & Koch for a more detailed
treatment [52].

Eq. (33.32) may be integrated to find the high-energy limit for the
total e+e− pair-production cross section:

σ = 7
9(A/X0NA) . (33.33)

Equation Eq. (33.33) is accurate to within a few percent down to
energies as low as 1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high en-
ergies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of
quantum mechanical interference between amplitudes from different
scattering centers. Since the longitudinal momentum transfer to a
given center is small (∝ k/E(E − k), in the case of bremsstrahlung),
the interaction is spread over a comparatively long distance called
the formation length (∝ E(E − k)/k) via the uncertainty principle.
In alternate language, the formation length is the distance over
which the highly relativistic electron and the photon “split apart.”
The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically
based on the average multiple scattering, or more rigorously using a
quantum transport approach [44,45].

In amorphous media, bremsstrahlung is suppressed if the photon

energy k is less than E2/(E + ELPM ) [45], where*

ELPM =
(mec

2)2αX0

4π!cρ
= (7.7 TeV/cm) ×

X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, k dσLPM/dk,
is shown in Fig. 33.12. With appropriate scaling by X0/ρ, other
materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM .
The pair-production cross sections for different photon energies are
shown in Fig. 33.17.

If k ≪ E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because
of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed
by a factor (kme/ωpE)2 [47]. Magnetic fields can also suppress
bremsstrahlung.

In crystalline media, the situation is more complicated, with
coherent enhancement or suppression possible. The cross section
depends on the electron and photon energies and the angles between
the particle direction and the crystalline axes [54].

33.4.7. Photonuclear and electronuclear interactions at still
higher energies :

At still higher photon and electron energies, where the bremsstrah-
lung and pair production cross-sections are heavily suppressed by the
LPM effect, photonuclear and electronuclear interactions predominate
over electromagnetic interactions.

At photon energies above about 1020eV, for example, photons
usually interact hadronically. The exact cross-over energy depends
on the model used for the photonuclear interactions. These processes
are illustrated in Fig. 33.18. At still higher energies (>∼ 1023eV),

* This definition differs from that of Ref. 53 by a factor of two.
ELPM scales as the 4th power of the mass of the incident particle, so
that ELPM = (1.4 × 1010TeV/cm) × X0/ρ for a muon.
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Figure 33.19: The photon mass attenuation length (or mean free path) λ = 1/(µ/ρ) for various elemental absorbers as a function
of photon energy. The mass attenuation coefficient is µ/ρ, where ρ is the density. The intensity I remaining after traversal of
thickness t (in mass/unit area) is given by I = I0 exp(−t/λ). The accuracy is a few percent. For a chemical compound or mixture,
1/λeff ≈

∑

elements wZ/λZ , where wZ is the proportion by weight of the element with atomic number Z. The processes responsible for
attenuation are given in Fig. 33.11. Since coherent processes are included, not all these processes result in energy deposition. The data for
30 eV < E < 1 keV are obtained from http://www-cxro.lbl.gov/optical constants (courtesy of Eric M. Gullikson, LBNL). The data
for 1 keV < E < 100 GeV are from http://physics.nist.gov/PhysRefData, through the courtesy of John H. Hubbell (NIST).

The increasing domination of pair production as the energy
increases is shown in Fig. 33.16. Using approximations similar to
those used to obtain Eq. (33.30), Tsai’s formula for the differential
cross section [42] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x(1 − x)

]

(33.32)

in the complete-screening limit valid at high energies. Here x = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between x and 1 − x, as can be seen by the solid curve in
Fig. 33.17. See the review by Motz, Olsen, & Koch for a more detailed
treatment [52].

Eq. (33.32) may be integrated to find the high-energy limit for the
total e+e− pair-production cross section:

σ = 7
9(A/X0NA) . (33.33)

Equation Eq. (33.33) is accurate to within a few percent down to
energies as low as 1 GeV, particularly for high-Z materials.

33.4.6. Bremsstrahlung and pair production at very high en-
ergies :

At ultrahigh energies, Eqns. 33.29–33.33 will fail because of
quantum mechanical interference between amplitudes from different
scattering centers. Since the longitudinal momentum transfer to a
given center is small (∝ k/E(E − k), in the case of bremsstrahlung),
the interaction is spread over a comparatively long distance called
the formation length (∝ E(E − k)/k) via the uncertainty principle.
In alternate language, the formation length is the distance over
which the highly relativistic electron and the photon “split apart.”
The interference is usually destructive. Calculations of the “Landau-
Pomeranchuk-Migdal” (LPM) effect may be made semi-classically
based on the average multiple scattering, or more rigorously using a
quantum transport approach [44,45].

In amorphous media, bremsstrahlung is suppressed if the photon

energy k is less than E2/(E + ELPM ) [45], where*

ELPM =
(mec

2)2αX0

4π!cρ
= (7.7 TeV/cm) ×

X0

ρ
. (33.34)

Since physical distances are involved, X0/ρ, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, k dσLPM/dk,
is shown in Fig. 33.12. With appropriate scaling by X0/ρ, other
materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM .
The pair-production cross sections for different photon energies are
shown in Fig. 33.17.

If k ≪ E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because
of this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed
by a factor (kme/ωpE)2 [47]. Magnetic fields can also suppress
bremsstrahlung.

In crystalline media, the situation is more complicated, with
coherent enhancement or suppression possible. The cross section
depends on the electron and photon energies and the angles between
the particle direction and the crystalline axes [54].

33.4.7. Photonuclear and electronuclear interactions at still
higher energies :

At still higher photon and electron energies, where the bremsstrah-
lung and pair production cross-sections are heavily suppressed by the
LPM effect, photonuclear and electronuclear interactions predominate
over electromagnetic interactions.

At photon energies above about 1020eV, for example, photons
usually interact hadronically. The exact cross-over energy depends
on the model used for the photonuclear interactions. These processes
are illustrated in Fig. 33.18. At still higher energies (>∼ 1023eV),

* This definition differs from that of Ref. 53 by a factor of two.
ELPM scales as the 4th power of the mass of the incident particle, so
that ELPM = (1.4 × 1010TeV/cm) × X0/ρ for a muon.
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The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there
is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 33.14.
Fits were also made with functions of the form a/(Z + b)α, but α
was found to be essentially unity. Since Ec also depends on A, I, and
other factors, such forms are at best approximate.

Values of Ec for both electrons and positrons in more than 300
materials can be found at pdg.lbl.gov/AtomicNuclearProperties.
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Figure 33.15: Photon total cross sections as a function of
energy in carbon and lead, showing the contributions of different
processes [50]:

σp.e. = Atomic photoelectric effect (electron ejection,
photon absorption)

σRayleigh = Rayleigh (coherent) scattering–atom neither
ionized nor excited

σCompton = Incoherent scattering (Compton scattering off an
electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant
Dipole Resonance [51]. In these interactions, the
target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell
(NIST).

33.4.5. Energy loss by photons :

Contributions to the photon cross section in a light element
(carbon) and a heavy element (lead) are shown in Fig. 33.15. At low
energies it is seen that the photoelectric effect dominates, although
Compton scattering, Rayleigh scattering, and photonuclear absorption
also contribute. The photoelectric cross section is characterized by
discontinuities (absorption edges) as thresholds for photoionization
of various atomic levels are reached. Photon attenuation lengths
for a variety of elements are shown in Fig. 33.19, and data for
30 eV< k <100 GeV for all elements are available from the web pages
given in the caption. Here k is the photon energy.

Figure 33.16: Probability P that a photon interaction will
result in conversion to an e+e− pair. Except for a few-percent
contribution from photonuclear absorption around 10 or 20
MeV, essentially all other interactions in this energy range result
in Compton scattering off an atomic electron. For a photon
attenuation length λ (Fig. 33.19), the probability that a given
photon will produce an electron pair (without first Compton
scattering) in thickness t of absorber is P [1 − exp(−t/λ)].
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Figure 33.17: The normalized pair production cross section
dσLPM/dy, versus fractional electron energy x = E/k.
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Produzione di coppie

La distribuzione angolare è abbastanza complessa e vincolata a quella 
energetica. Per determinarla, anche con diverse approssimazioni, 
servirebbe utilizzare la cinematica relativistica.
Ci accontentiamo di utilizzare una distribuzione gaussiana (rossa) con:
• <θ> = 0
• σθ= me/E (me è la massa dell’elettrone [facile trovarla già in eV…])
• e poi generare un φ uniforme per “distribuire” fra θx e θy

* R.Morris, J.Cohen-Tanugi ”Event Analysis for the Gamma-ray Large Area Space Telescope” https://slideplayer.com/slide/5321463

�± =
mec2

E±
u
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La vera distribuzione 
angolare è

con u distribuito come in 
Figura (curva blu).
Per la simulazione 
utilizzeremo la curva 
rossa.

https://slideplayer.com/slide/5321463


Bremmsstrahlung

15 cm

Calorimetro di BGO

In un calorimetro elettromagnetico una
particella come elettrone/positrone o un
fotone crea uno sciame elettromagnetico

In modo analogo alla produzione di coppie, si può 
descrivere la bremmsstrahlung, con sezione d’urto 
totale (**) (sempre ad energie del GeV e del TeV):

(leggermente maggiore che nel caso della pair-
production) e sezione d’urto differenziale nell’
energia del fotone emesso:

(con y = k/E, dove k è l’energia presa dal fotone 
rispetto all’energia iniziale dell’elettrone, E)
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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Figure 33.12: The normalized bremsstrahlung cross section
k dσLPM/dk in lead versus the fractional photon energy y = k/E.
The vertical axis has units of photons per radiation length.
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Figure 33.13: Two definitions of the critical energy Ec.

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.

(33.31)
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.

** vedi fra 2 slide
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Bremmsstrahlung

Anche in questo caso la
dipendenza angolare sarebbe
vincolata da quella in energia
e la cosa si risolve, con qualche
approssimazione, analiticamente
tramite dei conti di cinematica relativistica.

Per semplicità, anche qui facciamo una simulazione gaussiana, con:
• <θ> = 0
• σθ= me/E (me è la massa dell’elettrone [facile trovarla già in eV…])
• e poi generare un φ uniforme per “distribuire” fra θx e θy
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Bremmsstrahlung

che equivale a:

(che è la linea piena nella Figura) oppure

La sezione d’urto ha una divergenza (“infrarossa”) per y=0: escono 
tantissimi fotoni di bassissima energia ("soft"). Nella simulazione, quindi:
• dσ/dy è la distribuzione da cui “estrarre” i valori di y
• dovremo “trascurare” tutti questi fotoni di bassissima energia. 

Utilizziamo quindi l’approssimazione descritta nelle 2 prossime slide.
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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Figure 33.12: The normalized bremsstrahlung cross section
k dσLPM/dk in lead versus the fractional photon energy y = k/E.
The vertical axis has units of photons per radiation length.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2
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.
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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k dσLPM/dk in lead versus the fractional photon energy y = k/E.
The vertical axis has units of photons per radiation length.

2 5 10 20 50 100 200

Copper�
X0 = 12.86 g cm−2�

Ec = 19.63 MeV�
�

d
E

/d
x
 ×

 X
0
 (

M
eV

)

Electron energy (MeV)

 10

 20

 30

 50

 70

100

200

 40

Brems = ionization

Ionization

Rossi:�
Ionization per X0�
= electron energy

Tot
al

B
re

m
s
≈

E
E

xa
ct

br
em

ss
tr

ah
lu

ng

Figure 33.13: Two definitions of the critical energy Ec.

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Bremmsstrahlung

che equivale a:

(che è la linea piena nella Figura)

Si può dimostrare che il numero di fotoni emessi, attraversando una 
distanza uguale ad una lunghezza di radiazione,  con un’energia che è 
una frazione non trascurabile (>1/3) dell’energia dell’elettrone, è ~ 1: 
attraversando una lunghezza di radiazione vengono emessi molti fotoni 
ma solamente uno è “energetico” ("hard"). Questo, in parole povere 
significa che:

(dove per σ stiamo considerando solo il processo con fotone “hard”)  
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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Figure 33.12: The normalized bremsstrahlung cross section
k dσLPM/dk in lead versus the fractional photon energy y = k/E.
The vertical axis has units of photons per radiation length.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4
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ln
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−
4(kmax − kmin)
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using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Bremmsstrahlung

che equivale a:

(che è la linea piena nella Figura)

Quindi:
a. se il valore estratto di y è <1/3 à il fotone è "soft"
b. se il fotone è soft dobbiamo generarne altri finché non "esce" 

quello "hard" (o l'elettrone non finisce l'energia…)
c. se il fotone "soft" è sotto l'energia critica interrompiamo la 

propagazione di quel ramo di sciame e consideriamo tutta l'energia 
depositata

d. se il fotone "soft" è sopra l'energia critica dobbiamo propagarlo, ma 
continuare anche con il punto b
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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The vertical axis has units of photons per radiation length.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[
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−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.

(33.31)

E c
 (M

eV
)

Z
1 2 5 10 20 50 100

  5

 10

 20

 50

100

200

400

610 MeV________
 Z + 1.24

710 MeV________
Z + 0.92

Solids
Gases

H He Li Be B C NO Ne SnFe
�

Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
liquids (solid line) and gases (dashed line). The rms deviation
is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.
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Sciame elettromagnetico
Nonostante attraversando il materiale 
l’elettrone/positrone perda energia 
principalmente per bremmsstrahlung, la 
ionizzazione (come quando attraversa il 
Silicio) rimane presente.
Per semplicità assumiamo che perda 
un’energia indipendente dalla sua energia 
totale:

dE/dx ~ 1.6 MeV g-1 cm2 ρ
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Figure 33.11: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e

{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,

(33.29)
where y = k/E is the fraction of the electron’s energy transferred to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (33.26), we have

dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (33.30)

This cross section (times k) is shown by the top curve in Fig. 33.12.
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Figure 33.13: Two definitions of the critical energy Ec.

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [44,45] and dielectric
suppression [46,47]. These and other suppression effects in bulk
media are discussed in Sec. 33.4.6.

With decreasing energy (E <∼ 10 GeV) the high-y cross section
drops and the curves become rounded as y → 1. Curves of this familar
shape can be seen in Rossi [2] (Figs. 2.11.2,3); see also the review by
Koch & Motz [48].

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

−
4(kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

.

(33.31)
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Figure 33.14: Electron critical energy for the chemical elements,
using Rossi’s definition [2]. The fits shown are for solids and
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is 2.2% for the solids and 4.0% for the gases. (Computed with
code supplied by A. Fassó.)

33.4.4. Critical energy :

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy Ec is
sometimes defined as the energy at which the two loss rates are
equal [49]. Among alternate definitions is that of Rossi [2], who
defines the critical energy as the energy at which the ionization loss
per radiation length is equal to the electron energy. Equivalently,
it is the same as the first definition with the approximation
|dE/dx|brems ≈ E/X0. This form has been found to describe
transverse electromagnetic shower development more accurately (see
below). These definitions are illustrated in the case of copper in
Fig. 33.13.

che, ad esempio, per il Rame (Copper, in figura), vale 14 MeV/cm, cioè 
~ 20 MeV per lunghezza di radiazione, ~ 1.4 cm (dE/d(x/X0) = X0
dE/dx).

Al di sotto dell’energia critica (sempre tabulata [ignorare le differenze 
per e+ e e-]) la perdita dominante è per ionizzazione: possiamo 
interrompere lo “sviluppo” di quel ramo di sciame e considerare 
“depositata” tutta l’energia in pochi mm

ρ= 8.96 g cm-3
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Calorimetro di BGO

In un calorimetro elettromagnetico una 
particella come elettrone/positrone o un 
fotone crea uno sciame elettromagnetico

àsimulare lo sviluppo dello sciame con un’
“alta” statistica di particelle incidenti
àvalutare quanta è, in media, la frazione 
dell’energia dello sciame che viene persa 
poiché non tutte le particelle dello sciame 
rimangono fino alla perdita totale di energia 
dentro il calorimetro
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a difficult task. Earlier, large efforts were undertaken to develop an analyt-
ical approach [5]. At present, due to the increase of the computer capacity,
an accurate description is obtained from Monte Carlo simulations.

The longitudinal distribution of the energy deposition in electromag-
netic cascades is reasonably described by an approximation based on the
Monte Carlo programme EGS [6, 7],

dE

dt
= E0b

(bt)a−1 e−bt

Γ(a)
, (8.7)

where Γ(a) is Euler’s Γ function, defined by

Γ(g) =
∫ ∞

0
e−xxg−1 dx . (8.8)

The gamma function has the property

Γ(g + 1) = g Γ(g) . (8.9)

Here a and b are model parameters and E0 is the energy of the incident
particle. In this approximation the maximum of the shower development
is reached at

tmax =
a − 1

b
= ln

(
E0

Ec

)
+ Cγe , (8.10)

where Cγe = 0.5 for a gamma-induced shower and Cγe = −0.5 for an
incident electron. The parameter b as obtained from simulation results is
b ≈ 0.5 for heavy absorbers from iron to lead. Then the energy-dependent
parameter a can be derived from Eq. (8.10).

The experimentally measured distributions [8– 10] are well described by
a Monte Carlo simulation with the code EGS4 [1, 6]. Formula (8.7) pro-
vides a reasonable approximation for electrons and photons with energies
larger than 1 GeV and a shower depth of more than 2 X0, while for other
conditions it gives a rough estimate only. The longitudinal development
of electron cascades in matter is shown in Figs. 8.4 and 8.5 for various
incident energies. The distributions are slightly dependent on the mate-
rial (even if the depth is measured in units of X0) due to different Ec, as
shown in Fig. 8.4, bottom.

The angular distribution of the produced particles by bremsstrahlung
and pair production is very narrow (see Chap. 1). The characteristic angles
are on the order of mec2/Eγ. That is why the lateral width of an electro-
magnetic cascade is mainly determined by multiple scattering and can be
best characterised by the Molière radius

RM =
21 MeV

Ec
X0 {g/cm2} . (8.11)

t=x/X0, E0 è l’energia iniziale (dell’elettrone), Ec l’energia critica
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(TMath::Gamma(Double_t z))

che descrive uno sviluppo 
“longitudinale” come quello in 
figura.

456 33. Passage of particles through matter

photonuclear interactions can become coherent, with the photon
interaction spread over multiple nuclei. Essentially, the photon
coherently converts to a ρ0, in a process that is somewhat similar to
kaon regeneration [55].

Similar processes occur for electrons. As electron energies increase
and the LPM effect suppresses bremsstrahlung, electronuclear
interactions become more important. At energies above 1021eV, these
electronuclear interactions dominate electron energy loss [55].

33.5. Electromagnetic cascades
When a high-energy electron or photon is incident on a thick

absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t = x/X0 , y = E/Ec , (33.35)

so that distance is measured in units of radiation length and energy in
units of critical energy.
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Figure 33.20: An EGS4 simulation of a 30 GeV electron-
induced cascade in iron. The histogram shows fractional energy
deposition per radiation length, and the curve is a gamma-
function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes
at X0/2 intervals (scale on right) and the squares the number of
photons with E ≥ 1.5 MeV crossing the planes (scaled down to
have same area as the electron distribution).

Longitudinal profiles from an EGS4 [56] simulation of a 30 GeV
electron-induced cascade in iron are shown in Fig. 33.20. The number
of particles crossing a plane (very close to Rossi’s Π function [2])
is sensitive to the cutoff energy, here chosen as a total energy of
1.5 MeV for both electrons and photons. The electron number falls off
more quickly than energy deposition. This is because, with increasing
depth, a larger fraction of the cascade energy is carried by photons.
Exactly what a calorimeter measures depends on the device, but it
is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cherenkov
detectors and other devices with “thick” sensitive regions it is closer
to the energy deposition (total track length). In such detectors the
signal is proportional to the “detectable” track length Td, which is
in general less than the total track length T . Practical devices are
sensitive to electrons with energy above some detection threshold Ed,
and Td = T F (Ed/Ec). An analytic form for F (Ed/Ec) obtained by
Rossi [2] is given by Fabjan in Ref. 57; see also Amaldi [58].

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma

distribution [59]:
dE

dt
= E0 b

(bt)a−1e−bt

Γ(a)
(33.36)

The maximum tmax occurs at (a − 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (33.36) with

tmax = (a − 1)/b = 1.0 × (ln y + Cj) , j = e, γ , (33.37)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for
photon-induced cascades. To use Eq. (33.36), one finds (a − 1)/b from
Eq. (33.37) and Eq. (33.35), then finds a either by assuming b ≈ 0.5
or by finding a more accurate value from Fig. 33.21. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [2] (see Fabjan’s review in Ref. 57), but
with Ce = −1.0 and Cγ = −0.5; we regard this as superseded by the
EGS4 result.
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Figure 33.21: Fitted values of the scale factor b for energy
deposition profiles obtained with EGS4 for a variety of elements
for incident electrons with 1 ≤ E0 ≤ 100 GeV. Values obtained
for incident photons are essentially the same.

The “shower length” Xs = X0/b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in
Fig. 33.21. As a corollary of this Z dependence, the number of elec-
trons crossing a plane near shower maximum is underestimated using
Rossi’s approximation for carbon and seriously overestimated for ura-
nium. Essentially the same b values are obtained for incident electrons
and photons. For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and
electrons is somewhat greater than at lower energies since the first
or first few interaction lengths are increased via the mechanisms
discussed above.

The gamma function distribution is very flat near the origin, while
the EGS4 cascade (or a real cascade) increases more rapidly. As a
result Eq. (33.36) fails badly for about the first two radiation lengths;
it was necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (33.36) should be used only
in applications where average behavior is adequate. Grindhammer
et al. have developed fast simulation algorithms in which the variance
and correlation of a and b are obtained by fitting Eq. (33.36) to
individually simulated cascades, then generating profiles for cascades
using a and b chosen from the correlated distributions [60].

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Molière radius RM , given
by [61,62]

RM = X0 Es/Ec , (33.38)

where Es ≈ 21 MeV (Table 33.1), and the Rossi definition of Ec is
used.

à integrare l’equazione differenziale sopra per ottenere E(t) e 
integrare questa fino al numero di t corrispondente a 15 cm di 
BGO. Calcolare la frazione di energia contenuta nel calorimetro e 
quella “persa” e confrontare questo risultato con quello ottenuto 
col ToyMC

à (facoltativo) confrontare anche lo sviluppo vs t (i.e. quello in figura) 
fra ToyMC e funzione analitica. (Ricorda: l’istogramma della 
grandezza N(x) in bin di x descrive proprio dN(x)/dx)



Programma e relazione
• Il programma scritto dovrà essere accompagnato da opportuno 
Makefile e istruzioni (se sono più di tre righe c’è un problema!) di 
come compilarlo ed eseguirlo e come guardare i risultati 
(terminale, root file da aprire o immagini salvate su disco);

• Il programma scritto dovrà essere accompagnato da una 
relazione che descriva le scelte fatte e i risultati ottenuti, ma che 
sia anche sintetica


