Data Analysis Tools
C++, ROOT

V. Vagelli

C++

* Programming language

— Human “friendly” instructions (top level) that are translated to
“machine” instructions (a collection of Os and 1s) by the compiler

— Strict rules
— Object Oriented
e Structures interacting among themselves through methods

C++ Variables

* Avariable is a named location in the memory
— The name defines uniquely the variable in the scope { ... }
— After the definition, a memory block is assigned. The compiler knows the
bytes to allocate and which operations are legal by the type of the variable
— After the initialization, the variable gets a starting value.

@® Try to always initialize variables! Many runtime errors are generated by ill-
initialized variables

#include <iostream> //# defines a preprocessor instruction
using namespace std; //:: namespace resolution operator

int main() { // { defines a scope
int x; //variable with type int is defined
x=7+9; //variable x is initialized to some value

double d = 5.6; //variable d with type double is defined and initialized
cout<<x<<” *<<d<<endl;

cout<<”Size of x: “<<size of(x)<<endl; X
cout<<”Size of d: “<<size of(d)<<endl;
return 0; //return value of the function main 16

}

16 5.6

4

Algorithm Flux

* The flux of information can be controlled by several construct

* |F construct
» decides which scope to solve, controlled by a boolean (true/false) value

1f(this expression == true)
{ do _this(); }

else
{ do _that(); }

* Shortuct: if/else assignment in a line

—_

int value=0;

if(this expression == true)
{ value = this(); } L int value = this expression ? this() : that();
else

{ value = that(); }

Algorithm Flux

* The flux of information can be controlled by several construct

* FOR construct
* |terates the instructions in the scope for a fixed amount of times
for(int i=0; i<100; i++)
{ do_this();
do that();
}

A FOR loop can be solved (exit the loop and continue with the code)
with a break call

for(int i=0; i<100; i++)
{ bool I am bored = check if bored();
if(I am bored) break;

}
* A continue call allows to skip to the next iteration without solving

the complete scope

for(int i=0; i<100; i++)
{ bool I like this = check if good (1i);
if(!I like this) { continue; }
else { do stuff on this(); }

}

Algorithm Flux

* The flux of information can be controlled by several construct

* WHILE construct
* lterates the instructions in the scope while the heading expression is true
while(head expr==true)
{
do this();
if(time to stop()) head expr=false;

}
* break calls and continue calls work as for the FOR loop case

Arrays

 Anarrayis a group of elements with the same type indexed by the same variable

#include <iostream>
using namespace std;

int main() {
int xx[5] = {1,-3,1,0,4};

int yy[5];
for(int i=0; i<5; i++)

{ yyli] = xx[1]-xx[0]; }
float mm[4][7];
for(int 1i=0; 1ii<4; ii++)
for(int jj=0; Jjj<7; jjt++)
{ mm[ii][]J]j] = some value(ii,jj); }

return 0;

* Anarrayis NOT a dynamic structure. If you want an array with a dynamic size, you
should use a std: :vector

http://www.cplusplus.com/reference/vector/vector/

Functions

 Afunction is a segment of code (i.e. a set of instructions) that perform a single task
* Functions can be called during the execution of the programs.

* Functions may return a single value, a complex object, or nothing.

e Use functions! Make your code modular. It helps when things don’t work and you
have to debug your code.

type fun name (type parl, type par2, .. type parn)/{
//instructions here;

}

int magnitude(float number){
if(number<=0) return 0;
else return (int)loglO (number);

}

void even(int number){

printf(“%d is %s\n”, number, number%2==0 ? “even” : “odd”);
return;

}

int main() {
int x=102;
even(x);
printf (“magnitude is %d\n”, magnitude(x));

102 is even
magnitude is 2

Functions

 Afunction is a segment of code (i.e. a set of instructions) that perform a single task
* Functions can be called during the execution of the programs.
* Functions may return a single value, a complex object, or nothing.

e Use functions! Make your code modular. It helps when things don’t work and you
have to debug your code.

int sum(int x1, int x2=4){
X1l = x1+x2;
return x1;

}

int main() {
int x=102;
int s = sum(x, 10);
printf(“x:%d s:%d\n”, x, s);

int y=8;
printf(“y:%d s:%d\n”, x, sum(sum(y,2)));
}

x:102 s:112
y:8 s:14

1)

2)

3)

4)

Functions

int sum(int x1, int x2=4){
X1l = x1+x2;
return x1;

}

s = sum(x,10);
X S X S
102 ? 102 112
copy by value /
Y— x1 X2 x1 X2
102 ? 5] 112 10
x1 X2 . +x1—1 %2
102 10 112 /////>ﬁ§£:\\\\\\\\
x1 X2
112 10

C++ Pointers

For a C++ program, the memory of a computer is like a succession of memory cells,
each one byte in size, and each with a unique address.

— Data representations larger than one byte occupy memory cells that have
consecutive address

Each cell can be easily located in the memory by means of its unique address

When a variable is declared, the memory needed to store its value is assigned a
specific location in memory (its memory address)

it may be useful for a program to be able to obtain the address of a variable during
runtime in order to access data cells that are at a certain position relative to it.

Pointers are variables storing integers (usually memory addresses of other
variables)

Arrays are pointers!

ptr X

é ' > |)

12309 12310 12311 12312 12313 12314

#include <iostream>
using namespace std;

int main() { /7l A
int x = 16;
int *px = NULL;
PX = &X;
int **ppx = &(px);

cout<<x<<" "<<px<<"

C++ Pointers

//pointer to integer is defined and initialized
//value of px is set to the address "&" of x
//pointer to pointer

"<<ppx<<endl;

cout<<&x<<" "<<gpx<<" "<<gppx<<endl;
cout<<#*px<<" "<<*ppx<<" "<<**ppx<<endl;

*px = 25;
cout<<x<<" "<<*px<<" "<<**ppx<<endl;
return 0; //return value of the function main
}
X
16

0x7fff54b7afé6c

#include <iostream>
using namespace std;

int main() { /7l A
int x = 16;
int *px = NULL;
PX = &X;
int **ppx = &(px);

cout<<x<<" "<<px<<"

C++ Pointers

//pointer to integer is defined and initialized
//value of px is set to the address "&" of x
//pointer to pointer

"<<ppx<<endl;

cout<<&x<<" "<<gpx<<" "<<gppx<<endl;
cout<<#*px<<" "<<*ppx<<" "<<**ppx<<endl;

*px = 25;
cout<<x<<" "<<*px<<" "<<**ppx<<endl;
return 0; //return value of the function main
}
px X

L 2 16

0x7£££f54b7af60 0x7fff54b7af6c

C++ Pointers

#include <iostream>
using namespace std;

int main() { /7l A
int x = 16;
int *px = NULL; //pointer to integer is defined and initialized
pPX = &X; //value of px is set to the address "&" of x

int **ppx = &(px); //pointer to pointer
cout<<x<<" "<<px<<" "<<ppx<<endl;
cout<<&x<<" "<<&px<<" "<<&ppx<<endl;
cout<<#*px<<" "<<*ppx<<" "<<**ppx<<endl;

*px = 25;
cout<<x<<" "<<*px<<" "<<**ppx<<endl;
return 0; //return value of the function main
}
px X
4 > | 16

0x7£££f54b7af60 0x7fff54b7af6c

C++ Pointers

#include <iostream>
using namespace std;

int main() { /7l A
int x = 16;
int *px = NULL; //pointer to integer is defined and initialized
PX = &X; //value of px is set to the address "&" of x

int **ppx = &(px); //pointer to pointer
cout<<x<<" "<<px<<" "<<ppx<<endl;
cout<<&x<<" "<<&px<<" "<<&ppx<<endl;
cout<<#*px<<" "<<*ppx<<" "<<**ppx<<endl;

*px = 25;
cout<<x<<" "<<*px<<" "<<**ppx<<endl;
return 0; //return value of the function main

pPpPX pPX X
L > | & > | 16

0x7f£££54b7af58 0x7£££f54b7af60 0x7fff54b7af6c

C++ Pointers

#include <iostream>
using namespace std;

int main() { /7l A
int x = 16;
int *px = NULL; //pointer to integer is defined and initialized
PX = &X; //value of px is set to the address "&" of x

int **ppx = &(px); //pointer to pointer
cout<<x<<" "<<px<<" "<<ppx<<endl;
cout<<&x<<" "<<&px<<" "<<&ppx<<endl;
cout<<#*px<<" "<<*ppx<<" "<<**ppx<<endl;

*px = 25;
cout<<x<<" "<<*px<<" "<<**ppx<<endl;
return 0; //return value of the function main

16 0x7fff54b7af6c 0x7fff54b7af60
Ox7fff54b7af6c 0x7fff54b7af60 0x7fff54b7af58

16 Ox7fff54b7af6c 16
25 25 25

C++ Pointers & Functions

e C++ functions copy arguments by value

e C++ functions are independent scopes
@® Use pointers or references to modify arguments with functions

#include <iostream>
using namespace std;

void increase(int x) { x++; }; //pass by value

void p increase(int* px) { (*px)++; }; //pass by pointer

void r increase(int& x) { x++; }; //pass by reference

int main(){ MAN, | 5UCK AT THIS GAME..
int i=0; CAN YOU GIVE ME.
_ "o _ . A FEW POINTERS?
J_.ncreage (1) i cout<<i<<endl; 0x3A29213A
int *pi = &i; 0x6339292C,
p increase(pi); cout<<i<<endl; 0‘73636825'

int 4207 IHATEYOU

r increase(j); cout<<j<<endl;

=

C++ Classes

C++ is an object oriented language that allows the interaction in the code between
different modules

— The basic data structure is the Object

— The procedures used to handle, update and retrieve the Object information
are called methods

In C++, Objects are implemented in the form of Classes
If not specified otherwise, many instances of classes can be defined

C++ Classes

#include <iostream>
using namespace std;

class Rectangle

{
public:
double base; double height; //members of the class
double getArea(void); //methods of the class
void setBaseHeight(double,double); //methods of the class
}i

double Rectangle::getArea(void)
{ return base * height; }

void Rectangle::setBaseHeight(double b, double h)
{ base=b; height=h; }

int main()

{
Rectangle rec;
rec.setBaseHeight(2, 5.5); // the operator “.” is used to access methods
double area = rec.getArea();
cout<<”Area “<<area<<endl; Area 11

return 0;

C++ Classes

int main()

#include <iostream>
using namespace std;

class Rectangle

{
public:
Rectangle(); //constructor
double base; double height;
double getArea(void);
void setBaseHeight (double,double);
private:
~Rectangle(); //destructor
}i

Rectangle: :Rectangle(){
printf (“Creating-Rectangle\n”);
base=1; height=1;
return;

}

Rectangle: :~Rectangle(){
printf (“Destroying-Rectangle\n”);
return;

{

Rectangle rec;

double area = rec.getArea();
cout<<”Area *“<<area<<endl;
rec.setBaseHeight (2, 4);
area = rec.getArea();
cout<<“Area “<<area<<endl;
return 0;

Creating-Rectangle
Area 1

Area 8
Destroying-Rectangle

Memory Management

e C++ allocates memory when a variable is declared in a scope
 The memory remains allocated inside the scope
e The memory is freed and again available when the scope is resolved

int main() {
int *p = NULL;
if(true)

{

int x = 10;
p = &Xj

}

/*some code here...*/
cout<<#*p<<endl;
return 0;

Memory Management

e C++ allocates memory when a variable is declared in a scope
 The memory remains allocated inside the scope
e The memory is freed and again available when the scope is resolved

int main() {
int *p = NULL;
if(true)

{

int x = 10;
p = &Xj

}

/*some code here...*/
cout<<#*p<<endl;
return 0;

p

Memory Management

e C++ allocates memory when a variable is declared in a scope
 The memory remains allocated inside the scope
e The memory is freed and again available when the scope is resolved

int main() {
int *p = NULL;
if(true)

{

int x = 10;
p = &Xj

}

/*some code here...*/
cout<<#*p<<endl;
return 0;

P X

10

| 4
v

Memory Management

e C++ allocates memory when a variable is declared in a scope
 The memory remains allocated inside the scope
e The memory is freed and again available when the scope is resolved

int main() {
int *p = NULL;
if(true)
{
int x = 10;
p = &Xj;
}
/*some code here...*/
cout<<*p<<endl;
return 0;

*\J
*\J
*\J

p

4
v
)
)
)

Memory Management

* The new operator can be used to allocate memory that will remain allocated until
the user manually frees it

e Thedelete operator de-allocates the memory that has been previously
allocated

@® For each new operation, a delete operation is needed (when the variable is no more
used) in order to not waste memory

int *ptoint(int x){
int *px = new int;
*pPX = X;
return px;

}

int main(){
int *pi=NULL;
for(int i=0; i<3; i++)
{
pi = ptoint(i);
cout<<*pi<<endl;
delete pi;
}

return 0;

=

Memory Management

* The new operator can be used to allocate memory that will remain allocated until
the user manually frees it

* The delete operator de-allocates the memory that has been previously
allocated

@® For each new operation, a delete operation is needed (when the variable is no more
used) in order to not waste memory

int main()

{

Rectangle *rec = new Rectangle();
(*rec) .setBaseHeight (2, 4);
double area = (*rec). getArea();
cout<<"Area "<<areal<<endl;
rec->setBaseHeight (4, 5);

area = rec->getArea(); Creating-Rectangle
cout<<"Area "<<area<<endl; Area 8

delete rec; Area 20

return 0; Destroying-Rectangle

* The —> operator can be used as shortcut for (*point to class).

Preprocessor directives

e Steps from source code to machine level instructions

Preprocessor Compiler

»| Processed Code [Object File

Source File

. Preprocessor
Source File P

Linker Executable &P Program in Memory
»| Processed Code M’ Object File prne

 The steps are performed before the program starts to run

— Some languages follow (more or less) the same procedure BUT during the execution
process. This slows down the program execution.

* This is one of the reasons why C++ code runs far faster than code in many more recent languages.

 The Preprocessor modifies the source code according to user directives

#include “external header.h” //includes external definitions
#define CONSTANT 10 //the string CONSTANT is replaced everywhere by 10

int main(){
#ifdef DEBUG
cout<<”Do This”<<endl;
#else
cout<<”Do That”<<endl;
#endif
return 0;

Compiler

 The compilation procedure translates the source file(s) high-level instructions to
low-level machine instructions

Preprocessor Compiler

»| Processed Code [Object File

Source File

Preprocessor

Linker I pyecutable || —23 Program in Memory
0 —— ibraries
M Object File

» Processed Code

Source File

 The Compiler program build object files, that contain the instructions translated
from every single source files

— Object files may contain gaps in the program, that depends on the level of interaction
with other pieces of code

 The Linker program “fills the gaps”, parsing together the object files with
eventually external pieces of precompiled code (libraries)

 The executable is produced and can be run

* The instruction for compilation can be complicated = a dedicated language
(Makefile) is often used to (try to) make our lives easier

Compiler

The compilation procedure translates the source file(s) high-level instructions to
low-level machine instructions

Source File Preprocessor » Processed Code Mb Object File

Linker Executable &P Program in Memory
. P il)) ibraries
Source File [CPTOCESSOT ! processed Code M Object File

During the Compilation we must pass the path where to search for the header files,

for example esterna.h, installed into /usr/path esterna/include:
#include “esterna.h”

int main(){

int var = func _in esterna(5.3);
return 0;

}

we need to pass the path (/usr/path esterna/include) where to search for
esterna.h:

vvagelli@Firefly~/test $ g++ -I/usr/path esterna/include -c test.C —o test.o

Having the header files, the compiler can check if the syntax (return and input types)
of the external functions used, is correct, so check their interface.

So far the implementation is not know and, moreover, no compiled binary is provided

Compiler

 The compilation procedure translates the source file(s) high-level instructions to
low-level machine instructions

Source File || —LXeprocessor Compiler

» Processed Code Object File

Linker Executable &b Program in Memory
P il ibraries
Source File TEProcesSOl ml Processed Code M Object File '

During the Linking we must pass the path where to search for the compiled libraries (*.so, *.a or
*.dylib), for example 1ibesterna.so, installed into /usr/path esterna/lib:

#include “esterna.h”

int main(){

int var = func in esterna(5.3);
return 0;

}

we need to pass the path (/usr/path esterna/lib) where to search for

libesterna.so and which library to link, Libesterna. so (in the same dir we can have
more libraries):

vvagelli@Firefly~/test $§ g++ test.o -L/usr/path esterna/lib —lesterna —o test

The symbols (i.e. functions) required (by test . o) are taken from 1ibesterna.so and
linked into the executable, test.

The —1 option doesn’t want the leading 1ib, nor the extension (.s0): 1ibgsl.so 2> -1gsl

Compiler

* The compilation of a simple standalone programs looks like

vvagelli@Firefly~/test $ g++ test.C —o test
vvagelli@Firefly~/test $§ 1ls -altrh

-YwW-Y—--r—-— 1 vvagelli watchmen 1.7K Oct 9 13:03 test.C
-YWXr-Xr-x 1 vvagelli watchmen 11K Oct 9 13:04 test
vvagelli@Firefly~/test $./test

- the programs runs ©

* When the projects is more complex, the single line to type may look like

vvagelli@Firefly~/test $ g++ -g -0 -Wall —pedantic test.C -o exe/test -

D DEBUG_ -I/Users/vvagelli/root/root5.34/include -L/Users/vvagelli/root/
root5.34/1ib -1Core -1Cint -1RIO -1Net -1Hist -1Graf -1Graf3d -1Gpad -1Tree
-1Rint -lPostscript -1Matrix -1Physics -1MathCore -1Thread -lpthread -Wl,-
rpath, /Users/vvagelli/root/root5.34/1ib -stdlib=libc++ -1m —1d1l

* Things become “easier” (according to some guys) using the Makefile
programming language

e Makefile automatize the compilation and linking processes according to the
recent changes in the code

e The Makefile code has to be written in the Makefile file, that has to live in the
main folder of your C++ project

Compiler (Makefile)

e All the rules to compile a program/project can be written in a
“script” (including some logic) that automatically execute the whole ‘flow’ of
commands that need to be run

CXX := gt++

CXXFLAGS := -g 0 -Wall -pedantic #-g compile with debug flags, -0
optimizes the compilatiom (whatever that means), -Wall enables all warnings
-pedantic is pedantic

EXT LIBS S(shell root-config --libs) #see below for expanded version
INCLUDES S(shell root-config —cflags)#see below for expanded version
FLAGS := -D DEBUG

default: test

test: test.C
$(CXX) $(CXXFLAGS) test.C -o $@ $(FLAGS) $(INCLUDES) $(EXT LIBS)

clean:
rm -f exe/test

« The command to execute the script is make. make searches for a script file called
Makefile (or GNUMakefile) where to find the rules to be executed

* We can call explicitly one of the rules: make clean. If we issue just make, the first
rule is executed (in the example above make and make default are equivalent

Compiler (Makefile)

CXX := g++

CXXFLAGS := -g -0 -Wall -pedantic #-g compile with debug flags, -0
optimizes the compilatiom (whatever that means), -Wall enables all warnings
-pedantic is pedantic

EXT LIBS := $(shell root-config --libs) #see below for expanded version
INCLUDES := $(shell root-config —cflags)#see below for expanded version
FLAGS := -D DEBUG

default: test

test: test.C
$(CXX) $(CXXFLAGS) test.C -o $@ $(FLAGS) $(INCLUDES) $(EXT LIBS)

clean:
rm -f exe/test

vvagelli@Firefly~/test $ 1ls

Makefile test.C exe

vvagelli@Firefly~/test $ make

g+t+ -g -0 -Wall —pedantic test.C -o exe/test -D DEBUG -I/Users/vvagelli/
root/root5.34/include -L/Users/vvagelli/root/root5.34/1lib -1Core -1Cint -
1RIO -1Net -1Hist -1Graf -1Graf3d -1Gpad -1Tree -1Rint -1lPostscript -1Matrix
-1Physics -1MathCore -1Thread -lpthread -Wl,-rpath,/Users/vvagelli/root/
root5.34/1ib -stdlib=libc++ -1m —-1d1l

vvagelli@Firefly~/test $ exe/test

Compiler (step by step)

Preprocessor

Source File

Preprocessor

>

Processed Code

Compiler
"

Object File

Source File

>

Processed Code

Compiler

Object File

Executable

(ON

vvagelli@Firefly~/test $ man gcc

OPTIONS

Stage Selection Options

-C

-fsyntax-only

-E Run the preprocessor stage.

Linker
[:ibraries

Program in Memory

Run the preprocessor, parser and type checking stages.

-S Run the previous stages as well as LLVM generation and

optimization stages and target-specific code generation,
producing an assembly file.

".0" object file.

no stage selection option

Run all of the above, plus the assembler, generating a target

If no stage selection option is specified, all stages above are
and the linker is run to combine the results into an
executable or shared library.

run,

Compilation (step by step)

* Let’s do asimple “Hello world!” program. Let’s start with a single source file,
program.C:

#include <stdio.h>
void print();

int main()

{
print();
return 0;

}

void print(){
printf("Hello, World!\n");
return;

}

 To preprocess, compile and link, we can issue:

vvagelli@Firefly~/test $ g++ program.C -o program

Compiler (step by step)

Preprocessor

Source File » Processed Code |[|—

Preprocessor

Source File » Processed Code [|—

vvagelli@Firefly~/test $ man gcc

OPTIONS
Stage Selection Options
-E Run the preprocessor stage.

* by running ‘gcc —E’ one could produce the preprocessed version of the source file
(not so useful)

vvagelli@Firefly~/test $ g++ program.C -E -0 program.i

 the ‘program.i’ file will look like:

1 "program.C"
1 "<built-in>" 1
1 "<built-in>" 3

230 "/usr/include/stdio.h" 3 4
extern "C" {

void clearerr (FILE *);

int fclose(FILE *);

int feof(FILE *);

Compiler (step by step)

Preprocessor Compiler

» Processed Code

Source File Object File

Preprocessor Compiler

»{ Processed Code

Source File Object File

vvagelli@Firefly~/test $ man gcc

OPTIONS
Stage Selection Options
-¢c Run all of the above, plus the assembler, generating a target

.0" object file.

* by running ‘gcc —c’ we can compile the source code, without linking (and so
producing and executable [or a library])

vvagelli@Firefly~/test $§ g++ -c program.C -o program.o

Compiler (step by step)

Preprocessor Compiler

Source File » Processed Code Object File

Source File

Linker I p ecutable |[[—25 Program in Memory
b C i ——— ibraries
feprocessor Processed Code | —OTPLCT) Object File

vvagelli@Firefly~/test $ man gcc

OPTIONS
Stage Selection Options
no stage selection option
If no stage selection option is specified, all stages above are
run, and the linker is run to combine the results into an
executable or shared library.

e so after the object(s) creation we can finally link into an executable:

vvagelli@Firefly~/test $ g++ program.o -o program

 and so, summing the two:

vvagelli@Firefly~/test $ g++ -c program.C -0 program.o
vvagelli@Firefly~/test $ g++ program.o -o program

e and this is equivalent to:

vvagelli@Firefly~/test $ g++ program.C -o program

Compiler (step by step)

e thisis not only useful, but also needed, when compiling a large ‘project’ made of
several source files:
vvagelli@Firefly~/test $ 1ls
program.C

program func.C
program func.h

#include “program func.h”

int main()

{
print();
return 0;

}

#include <stdio.h>
#include “program func.h”

void print(){
printf("Hello, World!\n");
return;

}

void print();

Compiler (step by step)

* thisis not only useful, but often also needed, when compiling a large ‘project’ made
of several source files:

vvagelli@Firefly~/test $ 1ls
program.C

program func.C

program func.h

* to compile the ‘project’, one should compile all the pieces and then link them
together, in an executable:

vvagelli@Firefly~/test $§ g++ -c program func.C -o program func.o
vvagelli@Firefly~/test $ g++ -c program.C -o program.o
vvagelli@Firefly~/test $§ g++ program.o program func.o -o program

e and this is equivalent to:

vvagelli@Firefly~/test $ g++ program func.C program.C -o program

Debug

Two types of bugs in the code
Syntax errors, identified by the compiler. Easy to fix

Run-time errors: the program crashes during runtime. Typically this is due to a
wrong management of the memory (wrong assignment, access to ill-defined
memory blocks etc....)

Read carefully the program dump, sometimes helps to find the problem orin
which function the problem happens

Poor man approach: isolate the incriminated lines of code the hard way (using a
set of printf, for example)

Programs are available to investigate these problems. In particular (typically
installed by default in UNIX environments)

— GDB (GNU debugger), useful to set breakpoints in the code and investigate
the value of variables in the code during runtime
https://www.gnu.org/software/gdb/

— valgrind, specialized in memory management and code profiling
* http://valgrind.org

ROOT

ROOT is a collection of libraries that can be used for numerical (not
symbolic) statistical data analysis (and more)

Mainly developed at CERN for particle physics analysis, but greatly flexible
any other field

More than 1000 C++ classes
Based on the Modular and Class Inheritance concepts

These lectures will cover the details of ROOT v5.34, which is most stable
and widely used version of ROOT used (mainly) by all particle physics
experiments.

Recently, ROOT v6.00 has been released. While the backend of the
software is different, the frontend is basically the same.

ROOT

https://root.cern.ch/root/html534/ClassIndex.html

R
[

Bkl w il
B i alhod 13 = =
TRk danihs a [
Thddtons. LB B T Pl |
BT aniln |
W
e
etk © 1o
|
L L R T
| [T = [

[oaveTI

1
Pl o a Wi b st bbbk bbb

LT AL gy

i
=

-

T¥aa

TS bk

T bl s

[T

L et)
[

Pl g D

P —

Rt e b e bk st b

TObject: Mother of all ROOT classes, provides default behavior and protocol for all
objects in ROOT

ROOT

https://root.cern.ch/root/html534/TH1F.html
:ﬂ class TH1F - Which
Lf wmance e | NEQders to be

i Display options: 1

® Show inherited InCIUded
@shownonpwic | = \Which library

Quick Links: ROOT Homepage Class Index Class Hierarchy | sei [tTop]|[?Help]

Source: | header file | source file | viewVC header | viewVC source tO be Ilnked
|

Sections: | class description function members | data members | class charts

class TH1F: public TH1, public TArrayF |~ Trom which parent c rits

TH1F methods
Q"' THIF : histograms with one float per channel. Maximum precision 7 digits

Function Members (Methods)

embers and

public:
THA1F () 1S
TH1F (const TVectorF& v)
TH1F (const TH1F& h1f)
TH1F (const char* name, const char* title, Int_t nbinsx, const Float_t* xbins)
TH1F (const char* name, const char* title, Int_t nbinsx, const Double_t* xbins)
TH1F (const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup)

virtual ~TH1F ()
void TObiect::AbstractMethod (const char* method) const

Inheritance example: a TH1F object is indeed a TH1 and a TArrayF object, but
specialized for more specific tasks (and therefore more methods and potentials)

ROOT

https://root.cern.ch/root/html534/guides/users-guide/RO0OTUsersGuide.html

ROOT User’s Guide

ROOT

An Object-Oriented
Data Analysis Framework

ROOT User’s Guide to be read
(at least the first chapters) to
understand in details the
principles and the basics
(handling histograms,
functions, fits, graphs, trees,
etc....)

May 2013

e Preface
¢ 1 Introduction

o 1.1 The ROOT Mailing Lists

o 1.2 Contact Information

o 1.3 Conventions Used in This Book
o 1.4 The Framework

ROOT Installation

vvagelli@Firefly~/sandobx $ wget https://root.cern.ch/download/root v5.34.34.source.tar.gz
vvagelli@Firefly~/sandobx $ tar -xvf root v5.34.34.source.tar.gz

vvagelli@Firefly~/sandobx $ cd root

vvagelli@Firefly~/sandobx/root $ less README/INSTALL

vvagelli@Firefly~/sandobx/root $./configure --help

vvagelli@Firefly~/sandobx/root $./configure macosx64 --enable-tmva --enable-roofit
vvagelli@Firefly~/sandobx/root $ make

go take your coffee ... THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:
vvagelli@Firefly~/sandobx/root $ source build/this root.sh “MY CODE'S COMPILING.

vvagelli@Firefly~/sandobx/root $ root

HEY! GET BACK
TO WORK!

if does not work at the first try, don’t panic and carry on

vvagelli@Firefly~/sandobx/root $ ls tutorials

get yourself confident with this folder. Try some of them!

* To load all the settings at login, edit your SHOME/.bashrc or SHOME/.profile

export ROOTSYS="/users/walterwhite/root/root5.34" #path where ROOT lives
export PATH=$ROOTSYS/bin:$PATH
export LD LIBRARY PATH=$ROOTSYS/lib:$LD LIBRARY PATH

Interactive ROOT session

e Start an interactive session

vvagelli@Firefly~ $ root -1

root [0] int i=2;

root [1l] for(int j=1; j<5; j++) { i *= j; cout<<i<<endl; }
2

4

12

48

root [2] .q

vvagelli@Firefly~ $

* Runinteractively a ROOT macro
* (the “main” in the macro has to be called as the macro name)

vvagelli@Firefly~ $§ root —1 cool macro.C

root [0]

Processing cool macro.C...

The answer is 42

root [1] .g

vvagelli@Firefly~ $ root —1

root [0] .x stupid macro.C #same as root —1 stupid macro.C
Processing stupid macro.C

Error: illegal pointer to class object h 0x0 201 stupid macro.C:74:
%* Interpreter error recovered *

root [1l] .gggggqggqqq

* Compile your macro to spot compilation errors!

Interactive ROOT session

 ROOT programs can be interpreted (by the CINT-v5.34 or CLING-v6.00 C++ interpreter)
or compiled and run.
https://root.cern.ch/root/html534/guides/users-guide/CINT.html

* The previous examples used CINT/CLING
* CINT interprets the code line-by-line and executes it “on the fly”
X If you have a compilation problem in your macro, it tries nevertheless to execute it
and, typically, fails (like accessing an ill-defined pointer)
X in for/while loops, he reads the command to execute for every iteration
X In general, the execution is time consuming and the outcome not reliable
v/ Practical for instant checks and instant macros

vvagelli@Firefly~ § root —1 hallo world.C
root [0]

Processing hallo world.C...

Hallo World

root [1l] .qg

vvagelli@Firefly~ $§ root —1

root [0] .L hallo world.C #loads the content of hallo world.C in the memory
root [1] hallo world()

Hallo World

root [2] another function()

blablabla

root [3] .q

vvagelli@Firefly~ $

Compiling ROOT code

 ROOT programs as C++ source code can be compiled linking against ROOT libraries as
discussed in previous examples using a standard Makefile

CXX := g++

CXXFLAGS := -g -0 -Wall -pedantic #-g compile with debug flags, -0
optimizes the compilatiom (whatever that means), -Wall enables all warnings
-pedantic is pedantic

EXT LIBS := $(shell root-config --libs) #see below for expanded version
INCLUDES := $(shell root-config —cflags)#see below for expanded version
FLAGS := -D DEBUG

default: test

test: test.C
$(CXX) $(CXXFLAGS) test.C -o $@ $(FLAGS) $(INCLUDES) $(EXT LIBS)

clean:
rm -f exe/test

gt+ -g -O -Wall —pedantic test.C -o test —D DEBUG -I/Users/vvagelli/root/
root5.34/include -L/Users/vvagelli/root/root5.34/1ib -1Core -1Cint -1RIO -
INet -1Hist -1Graf -1Graf3d -1Gpad -1Tree -1Rint -1lPostscript -1Matrix -
1Physics -1MathCore -1Thread -lpthread -Wl,-rpath,/Users/vvagelli/root/
root5.34/1ib -stdlib=libc++ -1m -1d1

Compiling ROOT code

 ROOT programs as C++ source code can be compiled linking against ROOT libraries as
discussed in previous examples using a standard Makefile

CXX := gt++

CXXFLAGS := -g -0 -Wall -pedantic #-g compile with debug flags, -0
optimizes the compilatiom (whatever that means), -Wall enables all warnings
-pedantic is pedantic

EXT LIBS := $(shell root-config --libs) #see below for expanded version
INCLUDES := $(shell root-config —cflags)#see below for expanded version
FLAGS := -D DEBUG

default: test

test: test.C
$(CXX) $(CXXFLAGS) test.C -o $@ $(FLAGS) $(INCLUDES) $(EXT LIBS)

clean:
rm -f exe/test

 The output is a standard C++ output binary file

v Preferred mode for clean programming, code efficiency, and portability.

v Only respectable solution for heavy algorithms or analysis tasks

X Graphical “on the fly” output not straightforward = typically the output is saved in an
output ROOT file, and then displayed and analyzed later

Automatic Compiler of ROOT macros

 ROOT provides and automatic compiler (ACLiC) to automatically compile, link and load
programs using the C++ compiler and linker

v Performances similar to compiled code

v Allows an easier handle on graphical output and “on the fly” checks on the results

X Does not allow a natural interaction with external libraries or modular codes

vvagelli@Firefly~ § root

root [0] .L hallo world.C++

Info in <TMacOSXSystem::ACLiC>: /home/vvagelli/./hallo_world.C.so
root [1] hallo world()

Hallo World

root [2] another function()

blablabla

root [3] .q

vvagelli@Firefly~ § root

My personal poor-dumb-man suggestion

e Always compile your code, spot errors and clean warnings

* Go for the compiled solution, especially for complex codes containing many loops and
interacting with external libraries

* Go for the ACLIC solution to display results and run simple standalone codes

* Go for the CLIC only solution for easy fast checks and line-by-line code

TODbject

All objects in ROOT (files, histograms, and more complex) inherits from the TObject
class

TObjects provide an interface for I/O, error handling, inspection etc....

TObjects can be copied (TObject: :Copy()) and cloned (TObject:Clone())
Take home message: (almost) everything in ROOT is a TObject

https://root.cern.ch/root/html534/TObject.html

TNamed

Many top-level objects in ROOT that are used for data analysis inherits from the
TNamed class
TNamed objects are TObjects with a name and a title

https://root.cern.ch/root/html534/TNamed.html

What (uniquely) defines an object:
e CLASS: TH1, TAxis, TEfficiency,...
 NAME: a unique string to identify the object (like a barcode)
e TITLE: its nickname

ROOT Conventions

Classes begin with T: TLine, TTree, ...

Non-class types end with _t: Int t, Char t,

Data members begin with £: fTree, fEntries, ..

Member functions begin with capital: TTree: :GetEntries (), TH1l: :Draw(), ...
Constants begin with k: kDebug, kRed, ...

Global variables begin with g: gEnv, gRandom,

Machine Independent Types

Different machines may have different byte lengths for the same type. For example the
int type, It may be 16 bits on some old machines and 32 bits on newer ones
ROOT provides machine independent types

 Char_t Signed Character 1 byte * Long64_t signed long integer 8 bytes

« UChar_t Unsigned Character 1 byte * Ulong64_t unsigned long integer 8 bytes
» Short_t Signed Short integer 2 bytes * Float_t Float 4 bytes

« UShort_t Unsigned Short integer 2 bytes * Double_t Float 8 bytes

* Int_t Signed integer 4 bytes * Double32_t Double 8 bytes in memory,

« Ulnt_t Unsigned integer 4 bytes written as a Float 4 bytes

* Bool_t Boolean (0=false, 1=true)

Input/Output
https://root.cern.ch/root/html534/TFile.h

 ROOT objects can be saved and retrieved from memory using the TFile interface

 The ROOT files are similar to UNIX directory, containing objects and subdirectories

* Objects writtento filevia TObject::Write(const char* name)

* Objects can be retrieved from files via TFile: :Get (const char* name)
passing the object name. A direct cast to the object class is mandatory.

TFile *fout = new TFile(“fout.root”,”recreate”);
fout->cd();

h->Write(h->GetName());

hpx->Write(”"some other name”);

fout->Close();

TFile *fin= TFile::0Open(“fout.root”);
fin->1s();

TFile** fout.root
TFile* fout.root
KEY: TH2F hname;1 htitle

TH2F *h = (TH2F*)fin->Get(“hname”);
if('h) { cout<<”h pointing to NULL. Exit”<<endl; return 1; }
else{ h->AnyMethod(); ... }

Histograms

* Histograms are a powerful tool to store and represent BINNED data

Int t nbins=100; Double t min=2; Double t max=5;
TH1F *h = new TH1F("hname","htitle",nbins,min,max);
Int t coolnes level = 1000:
CoolExperiment *myexp = new CoolExperiment(coolness level);
h->GetXaxis()->SetTitle("X axis (units)");
h->GetYaxis()->SetTitle("Entries");
h->SetLineColor (kRed+2);
h->SetLineWidth(2);
h->SetFillColor (kRed-7);
for(int i=1; i<=1000000; i++)

{

h->Fill(myexp->GetAwesomness());

}

TCanvas *c = new TCanvas('cname",'"ctitle");
c->cd()->SetGrid();
h->Draw("");

Histograms

Histograms are a powerful tool to store and represent BINNED data

Int t nbins=100; Double t min=2; Double t max=5;

TH1F *h = new TH1F("hname","htitle",nbins,min,max);

Int t coolnes_level = 1000:

CoolExperiment *myexp = new CoolExperiment(coolness level);
h->GetXaxis()->SetTitle("X axis (units)");
h->GetYaxis()->SetTitle("Entries");

h->SetLineColor (kRed+2);

h->SetLineWwidth(2);

h->SetFillColor (kRed-7);

i i=1: i<= s j++ .
for(int 1=1; i1<=1000000; 1i++) htitle
{ m = : h
h->Fill(myexp->GetAwesomness()); .212000TWWWMWWWW'“WWW“WWWWTEW%MT&mm
=] - i | Mean 3.23
c R 1 _
} i1 0000F) Cncertom s67er05 |
B Overflow : 2.27e+04

TCanvas *c = new TCanvas('cname",'"ctitle");
c->cd()->SetGrid();
h->Draw("");

2 2.5 3 3.5 4 4.5 5
X axis (units)

Histograms

* Histograms are a powerful tool to store and represent BINNED data

Int t nbins=100; Double t min=2; Double t max=5;
TH1F *h = new TH1F("hname","htitle",nbins,min,max);
Int t coolnes level = 1000:

cool class TH1F: public TH1, public TArrayF

h—>G TH1F methods

h_>s K\‘ TH1F : histograms with one float per channel. Maximum precision 7 digits
h->S

h->S

for(

{ Function Members (Methods)

} public:
THIF ()
TH1F (const TVectorF& v)
TCan THAF (const TH1F& h1f)
c->cC TH1F (const char* name, const char* title, Int_t nbinsx, const Float_t* xbins)
h-=>D THA1F (const char* name, const char* title, Int_t nbinsx, const Double_t* xbins)
TH1F (const char* name, const char* title, Int_t nbinsx, Double_t xlow, Double_t xup)
} viGal =TATF ()
void AbstractMethod (const char* method) const

virtual Bool_t Add (const TH1* h1, Double_tc1 = 1)
virtual Bool_t Add (TF1* h1, Double_t c1 = 1, Option_t* option = "")

https://root.cern.ch/root/html534/TH1.html

Histograms

htitle
@ i R hname
_d=)1 2000¢ ‘ || Entries 1000000
-E B || Mean 3.23
B |l RMS 0.721
w10000F - Underflowt .587e+05

| overflow 2.27e+04

2 2.5 3 3.5 4 4.5 5
X axis (units)

* TH1 bin convention:
* Bin [0] : underflow
* Bin[1]: first bin
e Bin [N]: last bin
* Bin [N+1] : overflow

Histograms

h->Draw(”E1");
for(int ibin=1; ibin<=h->GetNbinsX(); ibin++)
cout<<ibin<<" "<<h->GetBinContent(ibin)<<" "<<h->GetBinError(ibin)<<endl;

}
htitle
. e 5 hname
52 85 9.21954 Entries 10000 |
53 105 10.247 Mean 3.225
54 100 10 s | -¢ 1 - WWWWWW,WWWRMS 0.7143)
55 103 10.1489 +
56 98 9.89949 ' 5 % i 5 R
* By default, ROOT assume a " %+ """""""""""
poisson distribution for each LT
. . . '#l
bin entries (independent ~ 20F A 2
from eaCh Other) L1 | L1 | L1l | L1l | L1111 | L1111

2.5 3 3.5 4 4.5 5

* Exercise: demonstrate X axis (units)

this fact

https://root.cern.ch/root/html534/TH1.html

Histograms

41 42 43

* Histograms are a powerful tool to store :
30 31 - 33

{ 20 21

Int t nbins=100; Double t min=2; Dot

22 23 24
TH1F *h = new TH1F("hname","htitle", i -- -
Int t coolnes level = 1000: 0 - - -

CoolExperiment *myexp = new CoolExperiment(conlnece lawvall.
h->GetXaxis()->SetTitle("X axis (units)"); Ao, @G O O
h->GetYaxis()->SetTitle("Entries"); *%%31;1313 :
h->SetLineColor (kRed+2); ' ' 5)
h->SetLineWidth(2);
h->SetFillColor (kRed-7);
for(int i=1; i<=1000000; i++) >
{ S Dl

h->Fill(myexp->GetAwesomness());

}

10

TCanvas *c = new TCanvas('cname",'"ctitle");
c->cd()->SetGrid();
h->Draw("");

ROOT Color Wheel

https://root.cern.ch/root/html534/TAttFill.html

Histograms

https://root.cern.ch/root/html534/TH1.html

e Useful TH1 methods
* TH1::Fill(Double t value, Double t weight);
e THl::GetEntries();
e THl::GetXaxis(); THl::GetYaxis();
* THl::Add(const TH1* hl, const Double t c=1);
* THl::Divide(const TH1* hl);
* THl::GetMean(); THl::GetRMS(); THl::GetSkewness();
* THl::Scale(Double t c=1);
* TH1l::Sumw2();
e TH1l::DrawNormalized();

 NB:in ROOT, RMS indicates the standard deviation of the data (sgrt of Il momentum
around the histogram mean)

e The histogram axis can also be not uniformly spaced

Double t xmin=1; Double t xmax=100; Int t N=50;

Double t *axis = new Double t[N+1];

Double t dlog = (TMath::Logl0(xmax)-TMath::Logl0(xmin))/N;

for(Int t i=0; i<=50; i++){ axis[i] = pow(10, loglO(xmin) + i*dlog) ; }
TH1F *h = new TH1F("hname","htitle”,N,axis);

htitle

~1/x

e Useful TH1 mett
e TH1::Fil
* TH1l::Get
* TH1::Get
* THI1::Add
e TH1l::Div
* THl::Get
htitle
hname
Entries 100000

~1/x
. . Mean 11.02
Log binning RMS 10.02

10 20 30

X axis (units)

Linear binning

40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

hname
Entries 100000
Mean 10.98
RMS 9.952

X axis (units)

—w

vness () ;
htitle

c->cd()->SetLogx();

hname
Entries 100000
Mean 11.02
RMS 10.02

10 _ 10?
X axis (units)

Parenthesis...

* Histograms, and all other objects in ROOT, can be declared and used in arrays/vectors

#include “TH1.h"”
#define N 10
#define M 255

int main(){
TH1F *h[N][M];
for(int ii=0; ii<N; ii++)
for(int j3j=0; jj<M; jj++)
{
h[ii][j]j] = new TH1F(Form(“h %d %d”,ii,jj), Form(“htitle - %d -
$d”,ii,jj), 1i<502100:200, O, jj);
}

vector<TH1D*> vec;
for(int ii=0; 1ii<N; ii++)
{
vec.push back(h[1i][0]);
}

Y axis (units)

Histograms

https://root.cern.ch/root/html534/TH2.html

TH2F *h = new TH2F("hname","htitle;X axis (units);Y axis (units)",100,-3,3,100,-3,3);
for(int i=0; i<1000000;i++) h->Fill (gRandom->Gaus(0,1), gRandom->Uniform(-3,3));
h->Draw("COLZ");

TH1D *px = h->ProjectionX("h px",20,50);
h->ProjectionY("h py »,40,60);

TH1D *py

200
150
100
50
B R B R R E

X axis (units)

2D and 3D histograms managed
by the TH2 and TH3 classes
Inherits from TH1, with
additional methods

Y axis (units)

TH2F *h =
for(int i=
h->Draw("C
TH1D *px =
TH1D *py =

w

[\

Histograms

https://root.cern.ch/root/html534/TH2.html

new TH2F("hname","htitle;X axis (units);Y axis (units)",100,-3,3,100,-3,3);
0; i<1000000;i++) h->Fill(gRandom->Gaus(0,1), gRandom->Uniform(-3,3));

OLZ");
h->ProjectionX("h px",20,50);
h->ProjectionY("h py",40,60);

Entries
Mean x

RMS x
= RMS y

1 2

X axis (units)

Meany -0.001362

250

290

150

100

50

0

5000

htitle

4900
4800

) 1 2 3
Y axis (units)

htitle

-2

1 2 3
X axis (units)

Y axis (units)

Profiles

https://root.cern.ch/root/html534/TProfile.html

TH2F *h = new TH2F("hname","htitle;X axis (units);Y axis (units)",100,-3,3,100,-3,3);
for(int i=0; i<1000000;i++) h->Fill(gRandom->Gaus(0,1l), gRandom->Uniform(-3,3));

h->Draw("COLZ");
TProfile *pfx = h->ProfileX("h pfx",50,100);
pfx->Draw("");

' ¥ Entries 1000000 |
Meanx 0.0005031
" Meany -0.001362

X axis (units)

ProfileX

0.2
0.15
0.1

Z:: Mﬁw *+‘**”“*+++*++#“*ﬁ”#ﬁ*+m+w~ |

0 {

-0.15
_0.2IIII|IIII|IIII|IIII|IIII|IIII

-3 -2 -1 0 1 2 3
X axis (units)

o

For each X bin, provides the mean
and RMS of the Y var histogram

Graphs

* Graphs are the default representation for scatter plot and, in general, for data
representing a relationship between values of Y and X

TFile *fin= TFile::0pen(“fin.root”);

TGraphErrors *g = (TGraphErrors*)=fin->Get(“gerrors”);
g->Draw(“AP");

for(int ip=0; ip<g->GetN(); ip++)
{cout<<g->GetX()[ip]<<" "<<g->GetY()[ip]<<" "<<
g->GetErrorX(ip)<<" "<<g->GetErrorY(ip)<<endl; }

26.5 6.35923 0 0.354434
27.5 4.08275 0 0.609833

—
o
)

varY (units)

8 3 28.5 6.07419 0 0.134274
B 1+ NB: differently from histograms, Graphs
4 _ H . {faY
I point counting start from “0
oF -
-
O- 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1

0 20 40 60 80 100
varX (units)

Graphs

 ROOT provides many classes to handle graphs

TGraph (no errors)

TGraphErrors (simmetric errors)
TGraphAsymmErrors (asimmetric errors)
TGraphBentErrors (titlted errors)

e Use graphs to analyze and fit when searching for a Y(X) relation

 Some useful methods

TGraph: :Print () dumpsthe values storedinthe Xand Y arrays
TGraph: :Eval (Double t x) extrapolatesthe graph pointsinto the x
value (using a spline with desired order) and gives the y value at that x
TGraphAsymmErrors::Divide(TH1* pass, TH1* total,
Option t* opt = "cp”) dividestwo histograms (where pass is a subset
of total) and computes efficiencies. Why asymmetric errors? (see theory)

Functions

https://root.cern.ch/root/html534/TF1l.html

 ROOT provides a complete interface to mathematical functions

TF1l *flandau = new TF1l("flandau", "TMath::Landau(x,[0],[1])",-5,15);

flandau->SetParName (0, "MPV") ;
flandau->SetParName(1l, "sigma");
flandau->SetLineColor (kRed+2);
flandau->SetParameters(3,3);

TCanvas *clandau = new TCanvas('"clandau", "clandau'");
clandau->cd();

flandau->Draw("");

TF1 *flandau2 = (TFl*)flandau->Clone("flandau2");
flandau2->SetLineColor (kBlue-1);
flandau2->SetParameters(5,1);

flandau2->Draw("same");

TLegend *legend = new TLegend(0.6,0.7,0.84,0.89);
legend->AddEntry(flandau, "mpv:3, #sigma:3","L");
legend->AddEntry(flandau2, "mpv:5, #sigma:1","L");
legend->Draw("same");

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

'TTTrrrfrrryrrrprrrprrryrrrprrryrrTyT
[N RN R R R R R B

|

I|III|III|IIIllllllllllllllllllllll

4 20 2 4 6 8 10 12 14

Functions

https://root.cern.ch/root/html534/TF1.html

 ROOT allows the possibility to use user-defined functions

Double t stepf(Double t * xx, Double t *par){
Double t x = xx[0];
return (x>par[0]) ? par[l] : x*par[2];

}

int main(){
Int t npar=3;
TF1 *func = new TF1l("func",stepf,0,5,npar);
func->SetParameters(1,4,2.5);
TCanvas *cfunc = new TCanvas('"cfunc","cfunc");
cfunc->cd()->SetGrid();
func->Draw("");

return 0;

N
[$)]
lllllllIlllllllllllllllllllllllllllllllllllllll

(@)

05 1 15 2 25 3 3.

Functions

https://root.cern.ch/root/html534/TF1.html

Some useful methods

* TF1:
 TF1:
 TF1l:
* TF1:

:Derivative(Double t x)
:Integral(Double t xmin, Double t xmax)
:Eval (Double t x)

:GetRandom(Double t xmin, Double t xmax)

The TMath class provides the basic mathematical functions. More complex tools are
available in the MathCore and MathMore libraries (via ROOT : :Math namespace), like
ROOT: :Math::riemann zeta(Double t x)

Histograms and Graphs con be fitted with TF1 (this will be covered in a dedicated

lecture)

GUI

* ROOT allows to browse files and edit plots using a Graphical User Interface
* Many actions (but not all) can be also performed via GUI. This gives an immediate
impact of the action, but only small actions can be performed

vvagelli@Firefly~ $§ root —1 fout.root
root [0]

Attaching file fout.root as fileO...
root [1] new TBrowser

ROOT Object Browser , Ql Canvas_1_n2 —
Browser |Ei|e Edit View Options Tools Help File Edit View Options Tools Help
Files | Canvas_1 [X]| Editor 1 [1| ProjectionX of biny=22 [y=-1.74..-1.68]
4 . "
&, Yo ption:[coLz |~ htitle] =
_ " Entries 10048

(droot m E %] Mean 0.003256
[L1PROOF Sessions = w _.|rvs 09846
IROOT Files S 102 5
B---ﬁigfout.root “; 5

I h:1 — Qo
- =3 €
'?j/ © 5
=44 Users > Z

?-----[:lShared > 1 O

=-(Jvvagelli

; 1 3 2 1 0 i .
X axis (units)
Command |
Command (local): | E

Filter: | All Files (*.*) E

htitle ['hname [128,235 [(x=-2.35412, y=-1.72941, binx=11, biny=22, binc=21 bine=4.5 ,

Trees

https://root.cern.ch/root/html534/TTree.html

The TTree is the core class for (unbinned) data storage and analysis

You can imagine a TTree as a smart database, where the data you collect are stored
and later retrieved for analysis

The concept is designed to store data in blocks of “data acquisition”

The tree is the holder of your measurement

The tree has entries, each one represents one set of measurement (time,temperature,
pressure,... / velocity,mass,energy,charge,...)

Trees

https://root.cern.ch/root/html534/TTree.html

TFile *fin= TFile::Open(“ntuples.root”);
TTree *t = (TTree*)fin->Get(“tree”);
t->Print();

kkhkkkkkkkhkhkhkhkhkhkhkhkhkhkkkhkhkhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkhkkhkhkkhkhkhkhkhkhkhkhkhkkkkkhkkkkkkikikikikrkkkkkk*k*x*%

*Tree ttree : tree *
*Entries : 748657 : Total = 1093810927 bytes File Size = 610660092 *
* 3 : Tree compression factor = 1.79 *
kkhkhkkkhkhhkkhkhkhkhkhkhdhhhkhhdhhhdhhhdhhhdhkhhdhhhdhhdhhhdhhhdhhhdhkhhdhhhdhhdhdhddhhddhdhdkhdhdkhdhdhhdhiddhixdkkx*x
*Br 0 :Run : Run/i *
*Entries : 748657 : Total Size= 3020474 bytes File Size = 361472 *
*Baskets : 284 : Basket Size= 13824 bytes Compression= 8.34 *
* *
*Br 1 :RunTag : RunTag/i *
Entries : 748657 : Total Size= 3021338 bytes File Size = 47037 =
*Baskets : 284 : Basket Size= 13824 bytes Compression= 64.11 *
L P . e *
*Br 2 :Event : Eved%/i *
*Entries : 748657 : Tota {ze= 3021050 bytes File Size = 2390942 *
*Baskets : 284 : Basket|Size= 13824 bytes Compression= 1.26 *
* *

https://root.cern.ch/root/html534/TTree.html#TTree:Branch@3

Trees

https://root.cern.ch/root/html534/TTree.html

cout<<t->GetEntries()<<endl;

748657

t->Show(5); //show the content of entry #5

======> EVENT:5

Run = 1305859009
RunTag = 61440
Event = 67450

Time = 1305859236
trkQlay = 0,

0, 1.00414, 1.07635, 0.964231, 1.06249,
1.13795, 1.17315, 1.291

Log, (eop)

Trees

https://root.cern.ch/root/html534/TTree.html#TTree:Draw@?2

TH1F *htrd = new TH1F("htrd",";trdclass",100,0,2);
tree->Draw("trdclass>>htrd");

TH2F *heoptrd = new TH2F("heoptrd",";trdclass;Log {10} (eop)",100,0,2,100,-2,1);
tree->Draw(”logl0(eop) :trdclass>>heoptrd"”,"","COLZ");

TH1F *htrdcut = new TH1F("htrdcut",";trdclass",100,0,2);

tree->Draw("trdclass>>htrdcut”, "eop>1");

1r
055_ g ,,,,,,, - 103 105 — hird
- L _ 104 — htrdcut
OF -l e _
- 4 4102 10°
—0.5 =R TRy :_ = 10
: ;10
1— R I Pl e
- 107 10
. - e
[= 1
_%;" S : Lol 1 0 02040608 112141618 2
02040608 112141618 2 trdclass

trdclass

Trees

The TTree: :Draw() method is useful for dirty & quick checks
A complete analysis of TTree data is usually done in an analysis macro
The following code is equivalent to the previous example

Float t trdclass; //the type has to be the same as in the TTree branch
Float t eop;
Double t darray[20]; //for arrays, also its size must coincide
//activate the TTree Branches
tree->SetBranchAddress(“trdclass”, &trdclass);
tree->SetBranchAddress (“eop”, &eop);
tree->SetBranchAddress (“darray”, array); // or &array[0]. Clear why?
//Loop on TTree entries
for(Int t ientry=0; ientry<(Int t)tree->GetEntries; ientry++)
{
tree->GetEntry(ientry); //variables are updated with entry stored values
//Fill the histograms
htrd->Fill (trdclass);
htrdeop->Fill(trd, loglO(eop));
if(eop>1){ htrdcut->Fill(trdclass);

Trees

e TTrees can be created using user data and stored in a TFile for future analyses.

Float_t fvar;
UShort_t usvar;
Bool t barray[10];

TTree *fout = new TFile(“fout.root”,”recreate”);
TTree *tout = new TTree(“tname”,”ttitle”);
tout->Branch(“fvar”, &fvar, “fvar/F");
tout->Branch(“usvar”, &usvar, *“usvar/s”);
tout->Branch(“barray”, barray, *“barray[10]/0");

for(Int t imeasure=0; imeasure<Nmeasures; imeasure++)
{
/* Fill the variables with meaningful numbers */
fvar = detector->GetContinuousValue();
usvar = detector->GetDiscreteCounts();
barray = detector->GetStatusArray();
/* Save this entry in the tree */
tout->Fill();
}
fout->cd();
tout->Write();
fout->Close();

Trees

* TTree::ReadFile(const char *filename) can be created used to create a
tree using number saved previously in a text file

aaa/I:bbb/F:ccc/C stupidfile.txt
0 3.4 who

999 -11.2 watches
-3 0.01 the
619 3.14 watchmen

TFile *fout = new TFile(“fout”,”recreate”);
fout->cd();

TTree *tree = new TTree(“tree”);
tree->ReadFile(“stupidfile.txt”)
tree->Write();

fout->Close();

Trees

#include "TFile.h"
#include "TTree.h"
#include <iostream>
#include <fstream>
using namespace std;

int filltree(const char* infilename, const char* outfilename) {

TFile *fout = new TFile(outfilename, "recreate"); fout->cd();
TTree *tree new TTree('"treename", "treetitle");

int aaa; float bbb; string ccc; //declare tree variables
tree->Branch("aaa", &aaa, "aaa/l");
tree->Branch("bbb", &bbb, "bbb/F");
tree->Branch("ccc", &ccc, "cecec/C");

std::ifstream infile(infilename); //open file to read

infile>>ccc; //skip first line

while(!infile.eof()){ //read the file

infile >> aaa >> bbb >> ccc; //store the file content into variables
printf("%d\t%f\t%s\n",aaa,bbb,ccc.c str());

tree->Fill(); //store the values into the tree. One entry is saved

}

tree->Write(); //Write the tree to file
fout->Close(); //close and saves the output file
return 0;

}

Trees

vvagelli@Firefly~ $§ root outfile.root
Lybraries loaded

Style set

root [0]

Attaching file outfile.root as file0...
root [1] treename->GetEntries()

(const Long64 t)5

root [2] treename->Show(0)

======> EVENT:0

aaa =0

bbb = 3.4
ccc = who
root [3] treename->Show(2)
======> EVENT:2

aaa = =3

bbb = 0.01

ccc = the

TChain

https://root.cern.ch/root/html534/TChain.html

« TTRees saved in different files, but the analysis has to be run on the whole dataset
« The TChain class can be used to chain the files, and it can be treated as a unique
TTree spanning all the files

{
TChain *chain = new TChain(“tree”);
chain->Add(“/some/dir/*.root"”);
chain->GetListOfFiles()->Print();

Collection name='TObjArray', class='TObjArray', size=100
OBJ: TChainElement tree/some/dir/filel.root
OBJ: TChainElement tree/some/dir/filel.root
OBJ: TChainElement tree/some/dir/file2.root

Float t fvar; //the type has to be the same as in the TTree branch
chain->SetBranchAddress(“fvar”, &fvar);
for(Int t ientry=0; ientry<(Int t)chain->GetEntries; ientry++)
{
chain->GetEntry(ientry); //variables are updated with entry stored values
//Fill the histograms
hfvar->Fill(TMath: :ACos(fvar));
}

Algebra and Physics Tools

* Many tools provided by ROOT to solve algebra and physics problems.
* Aselection of useful classes:

TString to handle character strings

TVector and TMatrix, to handle and solve numerical linear algebra problems
TLorentzVector, to describe Lorentz transformations

TRandom, to generate randon numbers

TSpectrum, to analyze and process spectra

TEfficiency, to calculate efficiencies and their uncertainties

TSpline, for non-parametric extrapolations

TMVA (Toolkit for Multivariate Analysis) classes, for multivariate analysis of big
data samples

RooOFit classes, for advanced data fitting

Algebra and Physics Tools

* Many tools provided by ROOT to solve algebra and physics problems.
* Aselection of useful classes:

TString to handle character strings

TVector and TMatrix, to handle and solve numerical linear algebra problems
TLorentzVector, to describe Lorentz transformations

TRandom, to generate randon numbers

TSpectrum, to analyze and process spectra

TEfficiency, to calculate efficiencies and their uncertainties

TSpline, for non-parametric extrapolations

TMVA (Toolkit for Multivariate Analysis) classes, for multivariate analysis of big
data samples

RooOFit classes, for advanced data fitting

