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Introduction

It is widely accepted that approximately 85% of the matter content of the
Universe is made of non-baryonic matter, usually called Dark Matter (DM).
Its existence is confirmed by the indirect effects of its gravitational interac-
tions. Its nature, however, is not yet clear. It is probable that DM is mainly
made of a form of matter that is not described by the Standard Model of
particle physics as we know it, and cannot interact via the electromagnetic
field. The search for DM is one of the most investigated and fields in particle
physics. Physicist are searching for its production by interaction of high en-
ergy standard matter particle in accelerators, by looking for the faint signals
of nuclear recoils in cryogenic underground experiments, and by searching
indirect signatures of DM annihilation or decay in the flux of cosmic rays.

In cosmic rays, DM signatures could be hidden in the features of charged
cosmic rays. Annihilation or decay of DM results in the production of a
pair of matter-antimatter ordinary particles, resulting therefore in an excess
of antimatter abundances with respect to what predicted by the standard
model of cosmic ray origin, acceleration and propagation. To investigate this,
cosmic ray detectors must be operated outside the atmosphere to identify the
primary cosmic ray before its interaction with the atmosphere.

Among the many species of charged cosmic rays, electrons and positrons
are unique, in the sense that the features in their fluxes can probe the prop-
erties of the galactic neighborhood. In the last 10 years, the cosmic ray
detectors PAMELA, Fermi-LAT and AMS-02 have discovered and precisely
measured an increase in the cosmic ray positron fraction (e+/(e+ + e−)), in-
dicating an excess of positron with energies larger than 30 GeV with respect
to what expected by the standard production of secondary positrons from
the interactions of primary cosmic rays with the interstellar medium. This
results clearly indicates an that an additional, primary source of electrons
and positrons has to be postulated to explain this feature. Two classes of
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sources have been mainly modeled by physicist as positrons sources: DM an-
nihilation in the Galaxy and the presence of nearby astrophysical sources like
localized pulsars or Super Novae Remnants can both be modeled to explain
the positron excess. The analysis of the spectral properties of the positron
fraction alone, however, cannot completely disentangle between the two hy-
potheses. An observable that could constrain the two classes of models is the
anisotropy in the arrival direction of positrons and electrons. In their way
from the source to the detector, the path of charged cosmic rays is random-
ized by the turbulent galactic magnetic field: this results in a local flux that,
as of today, is measured to be isotropic for charged cosmic rays with energies
below tenths of TeV. However, if few nearby, localized sources are produc-
ing primary electrons and positrons, a faint anisotropy could be measured in
the arrival direction of such particles. On the contrary, production of e+/e−

by DM annihilation or decay is not expected to induce any anisotropy, due
to the homogeneous distribution of the DM particle density in the galactic
neighborhood. Therefore, the measurement of any anisotropy in the arrival
direction of electron and positron cosmic ray would a robust evidence that
the origin of primary positrons is dominated by the production from nearby
astrophysical sources. As of today, only upper limits in the anisotropy of the
e+/e− fluxes have been set by the PAMELA, Fermi-LAT and AMS-02.

The cosmic ray detector DAMPE has been collecting cosmic rays in or-
bit since December 2015. DAMPE is a calorimetric detector whose main
physics targets are the measurements of gamma rays, nuclei and of electrons
and positrons. It features a thick, dense 31 X0 BGO calorimeter that pro-
vides excellent energy resolution and electromagnetic shower containment,
resulting in powerful electron identification capabilities up to 105.

DAMPE has already measured the fluxes of (e+ + e−) up to 5 TeV with
unprecedented accuracy in the direct determination of the flux features. The
data collected so far may provide interesting information in the search for
anisotropies in that channel. With respect to previous similar missions, in
fact, DAMPE features an improved energy resolution and a better control
of the hadronic background in the selected (e+ + e−) sample. The result of
the search for anisotropies in the DAMPE data, both in the form of a upper
limit or a discovery, will provide fundamental information to the experimental
scenario towards the identification of the source of the primary positrons in
cosmic rays.
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In this work, a technique based on a template-fit method to extract the
anisotropy level from the DAMPE data has been developed.

In chapter 1, I provide an introduction to the physics of charged cosmic rays
in the energy interval relevant for this topic.

In chapter 2, I discuss in detail the physics behind the propagation of
charged cosmic rays and the state-of-the-art of the searches for anisotropies
in the e+/- channel.

In chapter 3, I describe the DAMPE mission and the experiment detec-
tors.

In chapter 4, I develop the technical tools that are needed for the measure-
ment of the anisotropy, describing the methods to construct reference maps
of isotropic and anisotropic skies using MonteCarlo methods taking into ac-
count the detector acceptance, livetime and exposure, and I introduce the
mathematical framework to extract dipole components from the measured
sky maps.

In chapter 5, I apply the procedure to measure the anisotropy in simu-
lated maps with different levels of injected anisotropies to verify the methods
developed in this thesis, and to confirm the reliability of the method for appli-
cation on sky maps based on data collected by DAMPE. Finally, I provide the
sensitivity limits of the DAMPE detector for the measurement of anisotropy
in the (e+ + e−) channel based on the statistics collected by the mission.
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Chapter 1

Physical background

“ Physics is the science of all the tremendously powerful
invisibilities - of magnetism, electricity, gravity, light,
sound, cosmic rays. Physics is the science of the mysteries
of the universe. How could anyone think it dull? ”

— Dick Francis (2004)

Universe has always been an unquenchable source of inspiration ever since
man has memory, seen by some as a refuge and by many others as an in-
triguing and complex puzzle for which an unceasing feeling to solve it is felt.
Extremely high energetic phenomena, thermonuclear reactions inside stellar
cores, black holes, dark energy and matter, cosmic radiation and recently
gravitational waves; all this, and much more, is part of the great, fascinating
and at the same time tremendously mysterious ecosystem in which we all are
trying to unravel ourselves, leading to the discovery of fascinating realities.

The study of the cosmic radiation is an incredibly powerful tool used to
understand most of the mysterious phenomena; while we’re here discussing,
a rich and varied pull of particles with different species and energies has
been released from some astrophysical source into the deep space, traveling
through the interstellar medium, enriching the cosmic rays whose under-
standing is always a challenging activity for the astroparticle physicists. In
that way we have the stunning opportunity to connect two completely op-
posite physics’ fields: the tiny scale of elementary particles at 10−15 m with
the gigantic realm of astrophysics up to 1022 m.

The history of the cosmic rays is as interesting as the information they carry;
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all starts in 1912 with the famous balloon flight by Victor Hess, who could
be considered as the pioneer for the modern space age.

In that period the real nature was completely unknown; from that mo-
ment on has been understood that the radiation measured at hearth were
coming from space! Until the realization of accelerator facilities on ground,
cosmic rays were the only source for particles from KeV to 1020 eV and this
gave birth to a new field of physics; nowadays is infact known that the cos-
mic rays spectrum covers 13 orders of magnitude in energy and 32 in flux
intensity.

The name cosmic rays has been assigned in 1925 by Millikan, thinking
they were principally composed by gamma rays; even if our current knowledge
on the argument states they represents less than 1% of the total, the name
has been maintained for historical reasons.

The study of the cosmic particles allowed the discovery of many new ones,
like the positron, the muon, the pion and all the iperons as Λ, Σ, Ξ, Ω and
many others.

The arrival of the modern space age completely turned the situation up-
side down; the lunch of the Sputnik-1 in 1957, quickly followed by many
others missions, has been a milestone signing the coming a whole new era, of
which we are now the heirs. At the present time our knowledge regarding the
cosmic rays is far more complete, thanks to the development of new theoret-
ical models and, principally, to the realization of amazing experiments, both
on earth and in space. AMS-01, AMS-02, PAMELA, Fermi and DAMPE
(on which we’ll focus our attention) are just few stunning examples of the
modern space experiments, together with enormous ground based observa-
tory as Pierre Auger Observatory and CTA (in the next future), contributed,
contribute and will contribute on the knowledge of cosmic rays.

It’s necessary to remember that even though our enormous efforts and goals
achieved our knowledge stops to the 4% of the whole universe, highlighting
our deep ignorance and the long and winding road we still need to travel.

“ Look up at the stars and not down at your feet. Try to make sense of what you see,
and wonder about what makes the universe exist. Be curious. ”

— Stephen Hawking
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1.1 General information on cosmic rays

Cosmic rays fulfill the important role of messengers; they carry the infor-
mation regarding astrophysical sources, crossed interstellar medium, galactic
and extragalactic magnetic field, permitting to know and study what sur-
rounds us. They’re a continuous, stationary flux characterized by both par-
ticles (charged and not) and electromagnetic radiation; protons are extremely
abundant representing 85% of the whole, together with Helium nuclei (12%),
heavier ones (1%) and electrons (1%), while the other species are just few
‰of the total.

A characteristic feature of the cosmic rays is their spectrum; measured
by many different experiments on both space and hearth it has the typical
shape of a broken power law, with at least 2 slope changes:

dN

dE
∝ E−α α =

{
2.7 if E < 1015 eV,

3 if 1015eV < E < 1018 eV
(1.1)

Slope change is a sign that something’s changing, at level of the sources;
until the knee (1015 eV turning point) SNRs (Super Nova Remnants) provide
enough energy to accelerate particle but from that point on a new type of
astrophysical sources should be found, like AGN (Active Galactic Nuclei) or
pulsars. A huge amount of resources and efforts are spent to build up all the
theoretic framework at the base of the particle acceleration and propagation
through the interstellar medium; it so clear that the identification of the right
source of cosmic rays is critical; this will affect the acceleration mechanism
and, at the end, the final spectrum that should match with the experimental
measurements. A description of both the sources and particles’ acceleration
mechanisms will be provided in the following sections of this chapters.

Another important point that may be worth raising is is the following: have
the cosmic rays the same origin of the Solar System constituents?

The answer to this question is not as easy as it seems; a good starting might
be the analysis of the elements abundances, technique that permits a direct
comparison between the results. Some discrepancies and interesting behav-
iors have been observed:

• Li,Be,B are produced as transitions elements into stellar nucleosyntesis
and so are not abundant in the Solar System; on the contrary they are
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particularly present in the cosmic rays thanks to spallation processes
of heavier nuclei;

• Iron is abundant into the cosmic rays even if its cross section for spal-
lation processes is high, like 764 mb; this unexpected and strange be-
havior is known as Iron problem and could be solved, as we would like
to mention, introducing a path-length distribution for that element;

• elements with an even number of nucleons are principally produced
by stellar nucleosyntesis, and so more present into the Solar System
respect to the cosmic rays, which, at the contrary, principally generate
elements with an odd number of nucleons.

Figure 1.1: Spectrum of cosmic rays; in this picture different energy ranges
for space, baloon and ground based experiments have been highlighted, to-
gether with the contribution of each experiment [1]. The spectrum has been
multiplied by E2 to to make slope changes more evident. Note that, as seen
before, protons are really abundant, while electrons, positrons and photons
represents just few percents.
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Figure 1.2: Comparison of the nuclear relative abundances between cosmic
rays and Solar System.

In figure 1.2 a zig-zag pattern is evident; typical of nuclear physics this
particular behavior is due to the higher binding energy of elements with
an even number of nucleons.

As mentioned before, spallation process is fundamental to justify not only
the abundances of the cosmic rays, but also the interstellar medium crossed
during their propagation. All these information could be obtained consider-
ing a simple propagation model knows as Slab Model where all the elements
are supposed to go through the same quantity of material; labeling as NM

and NL the number of heavy and light elements respectively, λM and λL the
corresponding interaction lengths and PML the probability of the spallation
process, is possible to evaluate how the number of elements changes respect
to the grammage:

dNM(ξ)

dξ
= −NM(ξ)

λM
dNL(ξ)

dξ
=
PML

λM
NM(ξ)− NL(ξ)

λL

(1.2)
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The equation system 1.2 states a simple but important phenomenon: heavy
elements generate, by spallation processes, lighter ones, who themselves do
the same. The solution is easily obtained as:

NM(ξ) = N0
Me
−ξ/λM

NL(ξ) =

(
PML

λM
N0
M

)(
λMλL
λL − λM

)(
e−ξ/λL − e−ξ/λM

) (1.3)

Information regarding crossed grammage ξ could be easily obtained studying
NL/NM ratio (for example a particularly interesting and useful choice for the
elements could be B/C); to match with the experimental value measured
on Earth cosmic rays have to travel through the galaxy for a thickness of
equivalent material like 4.8 g cm−2. Since our planet has not a favorite
position into the Milky Way, any other observer could be able to measure
the same value.

From the equation system 1.3 is obvious that bigger is the spallation cross
section for a such element and less abundant it will became; in this way we
would expect a strong suppression for the abundance of iron, even if this is
not what has been experimentally observed (as figure 1.2 reports). The Iron’s
problem could be solved introducing a distribution of path lengths into the
slab model; Fe elements, instead of crossing the same quantity of equivalent
material ξ just go through a part of it, maybe a third. This modification not
only permits to reproduce the observed abundance for Fe, but also to explain
those of sub-Fe elements.

Analyzing more in detail the ratio NL/NM , as could be the case of B/C,
a certain energy dependence has been observed; this unexpected behavior
could be reproduced slightly modifying the equation system 1.2 introducing
a grammage energy dependence ξe(E):

NL

NM

=
PML/ξM

1/ξe + 1/ξM

NL

NM

≈

{
PMLξe(E)

ξM
if ξL � ξe,

PML
ξL
ξM

if ξe � ξL

(1.4)

At high values of particles’ rigidities, where ξL � ξe is satisfied, the ratio
NL/NM shown by equation 1.4 collapses to zero and the escape probability of
the cosmic rays depends on their rigidity through a spectral index δ, whose
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value is −0.6 (its uncertainty is high and the absolute value could range from
0.15 to 0.8 depending on the diffusion model chosen).

In case of low energy, the inequality to consider is ξe � ξL and, in ab-
sence of other processes, we could expect a flat ratio; this does not occur in
reality due to the reacceleration of the low energy nuclei by moving clouds of
magnetized plasma present in the interstellar medium (Fermi’s mechanism
of the second order is at the base of this process).

Returning now on a more general description, is possible to affirm that the
nature offers a very energetic beam, without providing its parameters; to
get the whole picture precisely measurements of the entire cosmic rays flux
(photons included) are needed. Reaching this ambitious goal could not be
possible without a strong link and cohesion with the entire wide theoretical
framework; for example a reliable propagation model is needed for accurate
background evaluation for faint signal searches in CR, of critical importance,
for example, for dark matter studies.

Many of the performed measurements, in term of ratios, could be really useful
to distinguish between models:

• between primary particles (e.g. C/O) to fix source abundances;

• between primary and secondary ones (e.g. B/C) obtaining the crossed
grammage, constraining the diffusion coefficient and the halo thickness;

• between radioactive isotopes (e.g. 10Be/9Be) to get information on the
escape times.

We will focus our attention on the electromagnetic component of the cos-
mic rays; these particles, even if particularly less abundant respect to the
other species, are exceptionally precious due to the fact that electrons and
positrons are able to provide information about the local sources and acceler-
ation sites. Electrons and positrons have an extremely small mass compared
to the other, which guarantees a faster and easier cooling through the emis-
sion of electromagnetic radiation. Inverse Compton, ionization, syncrotron
and bremsstrahlung are the involved physical processes which all have a com-
mon characteristic: their cross section is inversely proportional to the square
of the emitting particle’s mass.
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As we just sad in the introduction, among all the carried information
these light particles permit to investigate possible local sources of anisotropy
in their incoming directions, revealing important details regarding our sur-
rounding.

In the next sections of this chapter some of the characteristics of the cosmic
rays met so far will be more precisely described, together with all the phe-
nomena regarding them; we will analyse particles acceleration mechanisms
and possible astrophysical sources as function of the beam energy, cosmic
rays diffusion processes by non-collisional scattering with magnetic field ir-
regularities and the active cooling mechanisms, especially active on lighter
particles. Ample space will be dedicated to the anisotropy study of the cosmic
ray incoming directions, introducing the concept on both theoretical and ex-
perimental point of view and describing the actual state of the art analyzing
the available experimental results.

As may have emerged from this brief description, astroparticle physics is
extremely wide, constantly and rapidly changing, which makes it one of the
most interesting and challenging branches of the physics, on both experimen-
tal and theoretical point of view.
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1.2 Energy Density of Cosmic Rays

In the previous pages the flux of the cosmic rays has been analyzed: a bro-
ken power law with, at least, two slope changes (equation 1.1). From that
important physical quantity is possible to obtain the numerical density of
CRs:

NCR = 4π
Φ(> E0)

c
(cm−3) (1.5)

In the previous equation Φ(> E0) represents the integrated flux of the parti-
cles from a starting energy E0; not considering solar wind contributions, this
value is locked at 1 GeV.

Φ(> 1 GeV ) =

∫ 106

1

φ(E)dE =
k

γ − 1

[
E−γ+1

]1 GeV

106 GeV

= 1 (cm−2s−1sr−1)

(1.6)

Writing equation 1.6, k and γ are the parameters used to describe the flux
of the cosmic rays: Φ = kE−γ. In the energy range considered, the values
for these parameters are the following: k = 1.8 and γ = 2.7. Inserting
the value already calculated into equation 1.5 we obtain a numerical density
value or NCR = 4 ·10−10 (cm−3). The energy density could be easily obtained
integrating in energy the numerical one, as follows:

wCR =

∫ ∞
0

En(E)dE =

∫ ∞
0

E

(
4π

c
kE−γ

)
dE

=
4π

c

k

γ − 2

[
E−γ+2

]1 GeV

3·106 GeV

∼= 1 eV/cm3

(1.7)

We have to compare this value with other typical energy densities, under-
standing how important the energetic of the cosmic ray is respect to the
whole balance:

• magnetic field , considering a galactic magnetic field of 3 · 10−6 G:

wB =
1

8π
B2 = 0.2 eV/cm3 (1.8)
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• Cosmic Microwave Background , the electromagnetic radiation
born together with the Big Bang, whose important effects on cosmic
rays will be investigated later, has a density of 400 photons/cm3 and
considering its black-body spectrum with a temperature of 3K we could
found the corresponding energy density:

wCMB = nCMBKBT = 0.2 eV/cm3 (1.9)

• starlight , obtained from photo-metric measurements:

wSL = 10−2 eV/cm3 (1.10)

Analyzing the previous results is thus obvious that the energy density of the
cosmic rays represents an important part and should be absolutely considered
into the whole galactic energetic.
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1.3 Fermi acceleration mechanisms

Particle acceleration mechanism is one of the most interesting and funda-
mental aspect of the theory regarding cosmic rays; studying these processes
we should be able to reproduce measured particle spectrum, their energy up
to 1020 eV and chemical composition.

Due to the high temperatures of the astrophysical sources of the cosmic
rays, most of the atoms are completely ionized and the whole system of
particle could be described as a plasma; this is particularly true for H and He,
which represent the most part cosmic matter, since their ionization potentials
are quite low.

This matter aggregation status, commonly strongly aloof from every day
life, is the most common in space representing 99% of the whole present
material; is thus clear that its study and characterization is particularly im-
portant and useful. Speaking of cosmic rays, especially in case of acceleration,
we have therefore to describe a plasma; while electric fields are not impor-
tant over distances bigger than the Debye length due to electronic screening,
only magnetic fields could be able to influence all fluid characteristics and
behavior.

Figure 1.3: The Hillas plot [1], linking the dimensions of an astrophysical
source with the intensity of its magnetic field.
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The graph shown in figure 1.3, known as Hillas plot, highlights the correlation
between magnetic field strength and astrophisical source dimension, asserting
that in case of small sources magnetic field’s intensity should be high and
the other way around.

ZeβcB︸ ︷︷ ︸
Lorentz force

=
mγβ2c2

L︸ ︷︷ ︸
centripetal force

⇒ Emax ≈ ZeBcLβ (1.11)

The Hillas plot is based on the simple assumption that the accelerated parti-
cle has to be confined within the magnetic field of the accelerator; under this
hypothesis the maximum particles’ energy could be easily obtained, equating
Lorentz and centripetal force as shown by equation 1.11 (here B, L, Ze rep-
resent respectively magnetic field intensity, source size, and particle charge,
while β ≈ 1). Following this picture only objects with a gigantic size and/or
a huge magnetic field strength could accelerate particles up to the ultra high
energies of above 1020 eV as measured in the CR. All our considerations
have not included any kind of energy loss, particularly important for light
particles, as just explained.

The particle acceleration mechanisms could be addressed as direct or stochas-
tic processes; in the first case they’re particularly rapid and occur in excep-
tional dense zones where radiative losses become important and have to be
considered, while the second ones are based on continuously and gradual
energy gains. Fermi’s acceleration mechanisms, that we’re now going to de-
scribe [2,3], belong to the second class and are based on successive crossings
through inhomogeneities of magnetic fields, randomly moving into the inter-
stellar medium; this kind of processes, although not particularly fast, permit
to reach extremely high energy obtaining a spectrum very similar to the
observed one.

Considering an energy gain ξ in each scattering process with the magnetic
inhomogeneities, assuming E0 the particles initial energy and k the number
of collisions, the final energy may be written as Ek = E0(1 + ξ)k.
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Being P the escape probability for a single particle from the inhomogeneity,
after k scattering processes we can write:

Pk = (1− P ) · (1− P ) . . . (1− P )︸ ︷︷ ︸
k-times

P = P (1− P )k (1.12)

Knowing the number of escaping particle nk = N0Pk is finally possible to
easily obtain the differential energy spectrum:

nk = N0P

(
Ek
E0

) ln(1−P )
ln(1+ξ)

dn

dE
' n(Ek)

∆Ek
∝ n(Ek)

Ek
∝ E

ln(1−P )
ln(1+ξ)

−1 = E−γ
(1.13)

Obtained the differential spectrum, we’d ask our self what will be the max-
imum reachable energy for the particles; considering the whole process has
a finite time to happen, that will be also the final energy. After a certain
time t passed, and knowing the duration τcycle of each cycle involved in the
process, maximum energy could be written as follows:

Emax < E0(1 + ξ)t/τcycle (1.14)

Fermi developed two independent models for CR acceleration, both based
on these general assumptions: the first and second type acceleration mecha-
nisms.

Mechanism I results particularly inefficient, except for particle with ex-
tremely high initial energy, being the mean energy gain proportional to the
β2 of the accelerated particle1.

The second acceleration model proposed by Fermi increased its efficiency
(in this case the mean energy gain results directly proportional to the Lorentz
factor) and is capable to describe the measured particles’ spectrum:

dn(E) ∝ E−2dE (1.15)

More detailed calculus and information may be found in appendix A.

1As reported in appendix A, fermi acceleration mechanisms consider particles as classic,
β ∼ 0
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1.4 CR sources

Cosmic rays sources are extremely powerful astrophysics objects; up to knee
energies both Super Novae and pulsars fulfill the role of acceleration sites.
Based on different physical mechanisms, they contribute to the observed
power spectrum.

The evaluation of the crossed grammage ξ, using the slab model (equation
1.3), permits to obtain the residence time τ of cosmic rays inside the galaxy;
completely ignoring any kind of radiative loss, that value is of the order of
107 years. Once τ is known, together with the galactic volume VG and the
density energy of cosmic rays wCR ' 1 eV/cm3, the power needed to maintain
a stationary status can be evaluated: 1041 erg/s. Ordinary stars are not
sufficient to explain a such result, also considering solar flares; integrating
their whole power we obtain 1035 erg/s, many order of magnitude away.

We will now briefly describe all possible CR sources, highlighting the physical
mechanism and considering the corresponding energy window.

1.4.1 Super Novae

A Super Novae is an extremely interesting and important source, particu-
larly fascinating for its violent explosive energy releasing mechanism, cover-
ing many order of magnitude of the cosmic rays’ spectrum.

These sources could be classified as:

• type Ia, whose mechanism is the explosive carbon burning in a mass-
accreting white dwarf;

• type Ib-Ic and type II, releasing energy by core collapse of massive star.

The acceleration mechanism of the particles is based on shocks (Fermi second
type A); the system could be physically described as a blast wave, a shock
wave formed by an hot gas bubble expanding supersonically in the ambient
medium. The typical observed expansion speed of a supernova remnant is
∼ 104 km/s, while the sound speed in the ISM ranges 10 − 100 km/s; this
way the shock will form at the outer edge of the bubble (which acts as a
supersonic piston).
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Figure 1.4: SN blast wave shock hits inner ring

In figure 1.4 we could see the blast wave shock hitting inner ring at 20,000
km/s, lighting up knots of shocked, compressed and heated material, 160
billion km wide.

The energetic study is done on SN of type I b, I c and II, considering the
collapse of a massive core:

E =
GM2

core

rNS
− GM2

core

rbefore collapse
> 1051erg (1.16)

Only 1% of energy goes in kinetic energy of the particles, the remaining part
is transferred to neutrinos and photons, respectively 99% and 0.01%. SN
explosions are extremely energetic phenomena, whose luminosity could hide
the host galaxy too; this gives you an idea of the total released energy during
the process, considering how it’s distributed.
Released power by a Super Novae explosion could be evaluated considering
the following arguments:

• each explosive process releases an energy E ∼ 1051 erg;

• an estimate of their frequency, in our galaxy, is easily obtained:

fSN =
1

τSN
=

1

30
y−1 (1.17)
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• this could be considered practically as a continuous process, considering
CR escaping times of 107 years;

• power is thus finally evaluated:

WSN =
1051erg

30 · 3.15107s
∼= 1042erg/s (1.18)

• Considering the power needed to maintain a CR stationary status be-
fore obtained, what we need is a process capable to transfer to particles
al least 10% if the whole energy released; this is exactly type II Fermi’s
mechanism.

SN are responsible for the cosmic ray spectrum up to 1015 eV, covering so
many orders of magnitude; as we just said they are important astrophys-
ical sources, whose study permits to investigate many features of CR and
astroparticle physics in general.

1.4.2 Pulsar

Pulsars are fast rotating neutron stars, with an extremely intense magnetic
field capable to accelerate particles up to 1019 eV, so covering the most en-
ergetic part of the cosmic ray spectrum. These sources originate from heavy
cores of death stars; when the internal energy due to thermonuclear reac-
tions is no more present, external pressure due to gravitational force cannot
be opposed and the stellar core starts to collapse. In this situation, contrary
to what could be imagined, stationary equilibrium status can still be found
at the degeneracy pressure of neutrons, whose β-decays no more happen.

n→ p+ e− + ν̄e (1.19)

Because of Pauli’s exclusion principle the process represented by equation
1.19, in case of extremely high pressure, could no more happen and a dense
neutron core represents so a stable configuration. In case of core’s mass
bigger than M� there is no possibility to balance the external pressure, final
status could be nothing else than a black hole.
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We’re going to obtain pulsar’s maximum emission energy, showing how the
electromagnetic induction, that’s the physical mechanism powering up this
astrophysical source, could be used to reach the scope. We could start ap-
plying the Gauss theorem before and after the stellar collapse, obtaining the
magnetic field BNS of the neutron star:

BNS = B

(
R

RNS

)
∼= 10−2T · 1010 = 108T (1.20)

Rotational angular velocity ωNS is easily obtained equating gravitational and
centipetal acceleration:

GM2

R2
= Mω2

NSR→ ωNS ≈ 103 − 104s−1 (1.21)

Pulsars have a mass similar to the solar one, 1.5 M�, concentrated in a radius
ranging from 10 to 15 Km, which gives an idea of how high the density should
be. Inserting these parameters, together with the typical magnetic field and
radius of a pre-collapse star, into equation 1.20 we obtain a period that’s in
the range of milliseconds and a magnetic field strength of order 108 T, due
to the conservation of angular momentum and magnetic flux of the original
star.

The energy production mechanism, as we just said, is the electromagnetic
induction; using Maxwell’s equation regarding Faraday law, the induced elec-
trical field ε onto a linear region L could be easily obtained as follows:

∇× ε = −1

c

∂B

∂t
→ ε

L
=
Bω

c

ε =
LBω

c

(1.22)

Equation 1.22 highlights an important concept: differently from the other
astrophysical sources studied, in this case the energy for particle acceleration
comes from an electric field.
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We could finally write the maximum energy Emax for a particle of charge Ze:

Emax =

∫
Ze · ε · dx =

ZeBωL2

c
(1.23)

Equation 1.22 is particularly important and, inserting all the values before
obtained, a good estimate for the maximum energy is Emax = 1019 eV; pulsars
could so be considered extremely powerful astrophysical sources for cosmic
rays, interesting the most energetic and experimentally challenging part of
their spectrum, the region above the knee.

The electromagnetic radiation emitted by the pulsars is not isotropic into
the surrounding space but, at the contrary, concentrated into a narrow cone;
whenever this one hits earth we see a pulse similar to the light of a light-
house. Studying this particular physical system has been understood that
the misalignment between rotation and spinning magnetic axis generates, as
shown in figure 1.5, an accelerated magnetic dipole moment which radiates
(in complete analogy to an electric dipole) electromagnetic radiation causing
an energy loss of:

−
(
dE

dt

)
=
µ0Ω4p2

m⊥
6πc3

(1.24)

Within equation 1.24 Ω denotes the angular velocity, µ0 the vacuum perme-
ability and pm⊥ the magnetic moment perpendicular to the rotational axis.
The necessary energy, spent emitting electromagnetic radiation and acceler-
ation particles, is provided by a loss in the rotational energy which results in
an observed increase of the rotation period P of the pulsar.

While the magnetic dipole model explains where the energy for particle accel-
eration comes from, it does not state the actual mechanism, Goldreich-Julian
model fills this gap; the neutron star, and the pulsar too, is seen as a perfect
conductor so that any induced electric fields inside the star with radius R
will be canceled out by charges flowing around without resistance resulting:

~Ein + [(Ω×R)× ~Bin]︸ ︷︷ ︸
induced field

= 0 (1.25)
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Figure 1.5: (left) a schematic representation of a misaligned pulsar. Here
different possible emission regions of radiation are shown: the inner gap,
where a strong magnetic field prevents high energy photon emission due
to production of e± pairs and the outer gap, more distant from the pulsar’s
surface, where the magnetic field is much smaller and could allow high energy
emissions. (right) schematic view of a cascade generation in the pulsars
magnetic field causing photon and e± emission/acceleration. Both the images
have been taken from [1].

This approximation could be expanded to the pulsar magnetosphere in case
of extremely high electric fields (up to 1012 V/m), whose could rip off charges
from pulsar’s surface and surround it with a fully conducting plasma. As seen
in figure 1.5 particles could escape in case of open electric field lines and, at
the same time, accelerated by them flowing along the curved magnetic filed
lines.
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1.5 Dark Matter

Figure 1.6: An effective sketch representing the energy content of the uni-
verse; the reader may notice that just few percent of the total is covered by
barionic matter.

The Dark Matter (briefly DM) is characterized by non barionic matter,
weakly interacting2 (all the electromagnetic interactions should not be con-
sidered); this explains where its name comes from.

Figure 1.6 represents the energy content of the universe; the common
barionic matter just covers few percent of the whole content, which is mainly
divided between dark energy (DE) and cold dark matter3 (CDM). While for
the DM particles there are several candidates and theoretic models, dark
energy is, until now, an even deeper mystery.

Indirect proofs of the DM existence are known from many years, starting
with the rotation speed of galaxies, the famous Bullet Custer and arriving
up to the gravitational lensing effects.

2See appendix B for the evaluation of the dark matter cross section.
3See appendix B for a more complete description of the dark matter.
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Many different theoretical models of dark matter particles exist, but all of
them need to satisfy some basic requirements: the particles need to be neu-
tral4, particularly massive and weakly interactive5(candidates particles are
commonly known as WIMPs, Weackly Interactive Massive Particles). One
of the models that has been particularly investigated in the past years con-
siders supersimmetric particles χ, known as neutralinos, with a characteristic
mass of about 100 GeV and a cross section typical of the weak interactions.

Figure 1.7: Illustration of
possible dark matter annihi-
lation channels. The detec-
tion of an excess or peak at
the neutralino mass in those
spectra would be a hint for
WIMP dark matter.

Space experiments perform indirect research of DM, through the precise mea-
surement of fluxes of photons and charged particles. As well explained in fig-
ure 1.7 the annihilation process of two DM particles (whatever their nature
could be) produces barionic matter, like γ-rays, neutrinos6 and matter/anti-
matter couples, whose fluxes could be measured by space experiments.

Dark matter, however, is not only investigated in indirect manners; physi-
cists are trying to produce dark matter pairs through accelerating machines,
like LHC, or highlight its presence by direct scattering experiments. Unfor-
tunately both these investigation ways did not lead to conclusive results.

4Otherwise the electromagnetical cross section could not be ignored.
5See appendix B for more details.
6Neutrino detection is not possible with space experiments; it requires huge detection

volumes (because of the cross section, typical of weak interactions), complex geometries
for the detectors, ultra radio-pure materials.
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Figure 1.8: A very effective sketch showing all the pursued methods used
to investigate DM. Indirect measurements exploit annihilation channel, ac-
celerating machines the production one, while direct scattering experiment
proceed vertically in the graph.

Dark Matter annihilation, or decay, is often invoked to explain open prob-
lems in cosmic ray physics, like the positron excess measured in the positron
fraction (see section 1.6 for more details).

Signatures of dark matter activity in cosmic rays can be searched in many
channels. For what regards charged CRs, since dark matter annihilation or
decay produces a pair of particle plus antiparticle Standard Model matter
(like p/p̄, e+/e− and others), and considering that cosmic rays are dominated
by matter particles (protons, helium, electrons, etc), physicist are searching
for an overabundance of antimatter with respect to what expected by the pro-
duction models. Typical searches are the channels of positrons, antiprotons,
antideuterium and antihelium.
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An evident excess has been found in the positron channel, as described in
the next section. Measurements of antiproton fluxes are at the limit of com-
patibility with the expectation of a purely secondary antiproton production,
as shown by the plot in figure 1.9.

Figure 1.9: Antiproton measurements by PAMELA and AMS-02 compared
to the astrophysical prediction and its uncertainties [4].

Antideuterium and antihelium are instead considered the smoking gun for
the indirect search of DM in CRs. No events of antideuteron or antinuclei
has been found in CRs, and only upper limits in their flux has been set. The
sensitivities of all this channels to the presence of DM activity are dictated
by the level to which the production of antimatter by secondary processes of
spallation of primary cosmic rays is known. In fact, the predictive power of
such predictions is fixed by the finite knowledge of cosmic ray propagation
mechanisms, by the knowledge of nuclear scattering and production cross sec-
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tion at high energies, by the influence of the solar modulation for low energy
cosmic rays and by the knowledge of the fluxes of the primary progenitors.
All of these uncertainties can be and are being improved by complementary
measurements of charged cosmic rays (like nuclear and isotopic abundances
in cosmic rays), by the study of time dependent Solar effect on the low energy
part of the fluxes, and by dedicated measurements at accelerators or fixed
target experiments on ground.

1.6 Positron fraction

Many times we referred to the isotropy or anisotropy in the incoming direc-
tions of charged cosmic rays as a very promising study; the positron fraction,
a very important measurement performed by AMS-02, permits to understand
the physical applications of this research.

1.6.1 Spectrum characteristics

ψ =
φe+

φe+ + φe−
(1.26)

Equation 1.26 represent the definition of the positron fraction ψ, that’s the
positron flux respect to the all electron one (electrons and positrons)7.

Figure 1.10 shows different measures of positron fraction in function of energy
by Fermi8, PAMELA and AMS-02 [5]; in the latter case with the biggest
accuracy, high statistics and wider energy range, defining new standards for
space astroparticle measures.
This graph immediately highlights an unexpected behavior: starting from 10
GeV is present an hardening of the spectrum, meaning that other sources
of positron should exist. Considering just propagation models the positron
fraction is expected to decrease as function of the energy; expected values

7The usefulness of this definition is principally due to experimental reasons: having to
measure the flux of two particles, dealing with a measurement ratio permits to cancel the
contribution of systematical errors, similarly present at both numerator and denominator
of the fraction.

8Differently from the other experiments, Fermi-LAT is not a magnetic spectrometer;
Earth’s magnetic field asimmetry, such as East-West effect, permits for certain positions
of the detetcor to distinguish between electrons and positrons.
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Figure 1.10: Measured positron fraction by AMS-02, PAMELA and Fermi ;
discrepancies with the expected flux from CR propagation (represented by
the grey band) are evident [5]. Other sources for positron should exist. Grey
thick bar represent the positron fraction value just considering the effects of
the cosmic ray propagation.

are shown as a grey thick band. All three experiments show consistently a
rise in the positron fraction above 10 GeV, while AMS-02 data indicate a
change of slope up to 275 GeV, as shown in figure 1.11.

Studying the positron fraction several characteristics may be highlighted:

• is not present any kind of fine structure;

• positron fraction steadily increases between 10 GeV and 250 GeV;

• the ratio is of the order of 10% after few tens of GeV;

• is possible to estimate that 90% of the electrons must be of primary
origin; this is possible assuming that no positrons are accelerated at
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sources, together with the symmetrically creation of matter and anti-
matter in each interaction. Positrons are thus created by interactions
of primary cosmic rays with the interstellar medium; this phenomenon
is well predicted by all the cosmic ray propagation software, such as
GALPROP or DRAGON.

Figure 1.11: AMS-02 positron fraction slope analysis [6].

Figure 1.11 highlights some of the characteristics of the positron fraction,
such as its slope and the zero crossing point9.

9The zero crossing point is the value of energy at which the positron fraction stops to
increase.
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Figure 1.12: The graph shows a data fit with different models: dark matter
decay (green), propagation physics (blue) and production in pulsars (red).
The ratio below 10 GeV is dependent on the polarity of the solar magnetic
field.

Figure 1.12 shows different theoretical models trying to fit the measured
spectrum of the positron fraction; unfortunately all consistent with the mea-
sures at high energy, together with data lack in the same region, make this
operation complex. Looking at the provided fitting models, two of them are
particularly interesting, precisely regarding pulsars and dark matter and will
be described in the following section.

The positron fraction strongly contradicts the assumption that positrons are
produced only by the interactions of the primary cosmic rays with the inter-
stellar medium; for this reason an additional new source of primary positrons
is needed to explain the data.

Among the most likely and investigated scenarios there are e+/e− couples
produced by annihilation of galactic dark matter particles or by astrophysical
sources, such as pulsars.

The anisotropy study of the incoming directions of charged comic rays
may be helpful to distinguish between these models.
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Chapter 2

Anisotropy of the incoming
directions of charged cosmic
rays

In chapter 1 the basic concepts of cosmic rays physics, together with the char-
acteristics of their sources, have been described, paying particular attention
to Dark Matter and Pulsars.

Here we are going to deeply study the concepts of isotropy and anisotropy
in the incoming directions of charged cosmic rays, applied to the case of
electrons and positrons, describing how they could be used to explain and
better understand the positron fraction measured by AMS-02 [5, 6].

This section is particularly important and resembles the center of this
work; we’ll start discussing about the distance from which cosmic rays are
coming from, depending on energy and family of the particle, their confine-
ment into the galaxy by non-collisional scattering processes with magnetic
field irregularities, leading to the concept of isotropy and anisotropy on both
theoretical and experimental point of view.

2.1 Confinement of cosmic rays

The cosmic rays continuously hit our planet from very different distances,
principally depending on their mass, energy and cooling mechanism; just
analyzing electrons and protons (and respective antiparticles) enormous dif-
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ferences could immediately be highlighted1. An accurate analysis of the
physical processes acting on them is thus needed; electrons and positrons
start to lose significant amount of energy, by radiative cooling, at relatively
low energies (lower than that of the knee), strongly limiting their traveled
distance through the interstellar medium. At the contrary, this is not valid
for protons and heavier nuclei which, at the same energy, are able to cover
larger distances2.

The slab-model, briefly described in section 1.1, allows to obtain the crossed
grammage ξ by the cosmic rays, together with their residence time τ inside
the galaxy. Obtained this result is immediately possible to evaluate the
traveled distance L, assuming the galactic density (including halo) ρ = 0.3
particles/cm3 and considering also their relativistic speed:

L = cτ =
ξ

ρ
∼ 106pc (2.1)

The distance computed by equation 2.1 is several order of magnitude bigger
than the galactic dimension, typically of order of several Kpc. The path of
the cosmic rays is thus not smooth and continuous, but similar to a random
one, ruled by radiation, matter and magnetic field distributions with which
they continuously interact. As will be described in this section, the arrival
directions of charged cosmic rays don’t point to the sources and their flux is
isotropic up to very high energies. That is an important difference respect to
the photons; the electromagnetic radiation keeps the information about the
generation sites, except for gravitational interactions.

Cosmic rays confinement, except in the case of extreme energy, let suppose
that the particle sources are located into our galaxy.

1See section 2.1.1 for more details.
2As an example, extremely high energy protons with energy ∼ 1020 eV may be able to

cover a distance of 30 Mpc before loosing all their energy (Greisen–Zatsepin–Kuzmin effect,
more details in appendix C). This value have to be compared with the 10 Kpc traveled by
the electrons (positrons) (see section 2.1.1). Though these energies are numerous orders
of magnitude higher than those that DAMPE is capable to measure (∼ 10 TeV), this
example well highlights the difference between adrons and electrons (positrons).
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2.1.1 Electrons and positrons traveled distance

Evaluation of the traveled distance for electrons and positrons is not as easy
as the proton case, and additional energy loss terms have to be taken into
account in the description of their propagation. This is possible considering
the propagation equations for cosmic rays, a real mine embedding all the
physical processes and interaction that these particles perform:

dNi

dt
= D∇2Ni +

∂

∂E
[b(E)Ni]−

Ni

τi
+
∑
j>i

Nj

τij
− nvNiσi +

∑
j>i

nvNjσij (2.2)

All the single terms on the right hand side of equation 2.2 contribute to the
variation of the number of particles regarding a certain species i, both in
positive and in negative, considered fixed:

• D∇2Ni: this is the diffusive term, proportional to the density gra-
dient through D = 〈vi〉/3Niσi, the diffusion coefficient. As this last
equation is describing, the diffusion coefficient is proportional to the
velocity and the reciprocal of density and cross section of ”i” species
particles;

• ∂
∂E

[b(E)Ni]: this term resembles the continuous energy losses, due
to radiative processes, such as inverse compton and synchrotron, prin-
cipally concerning light particles.

〈
(
dE

dt

)
tot

〉 =
4

3
cσTUradγ

2β2 (2.3)

〈
(
dE

dt

)
tot

〉 =
4

3
cσTUBγ

2β2 (2.4)

Equations 2.3 and 2.4 describe the mean energy losses by electrons and
positrons during their diffusion through the galaxy; σT represents the
Thomson cross section, Urad and UB are respectively the energy density
of the radiation and magnetic fields.

The cross section of the processes is proportional to the square of the
mass of the charged particle. The radiative energy losses can be ignored
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for particles heavier that electrons and positrons, at least for energies
below that of the knee.

• Ni
τi

and
∑

j>i
Nj
τij

represent the decay of instable elements, with a

lifetime τi and τij respectively. While the first elements resembles the
decay of ”i” particles the second represents, on the contrary, the decay
of ”j” elements to ”i”. The decay terms are fundamental especially for
the description of nuclei propagation;

• nvNiσi and
∑

j>i nvNjσij are the spallation terms; consisting in the
interaction of heavier nuclei with the interstellar medium (principally
protons) that produce lighter particles.

Figure 2.1: The spectrum of electron plus positron (multiplied by E3) mea-
sured by DAMPE [7], together with the measurements of the previous ex-
periments. The grey band represents H.E.S.S. systematic errors apart from
the approximately 15% energy scale uncertainty. The error bars (±1σ) of
DAMPE, AMS-02 and Fermi-LAT include both systematic and statistical
uncertainties added in quadrature.
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Figure 2.1 is the all-electron (e+ + e−), i.e. the sum of the electron and
positron flux) spectrum, measured by DAMPE in 2017, based on more than
500 days of data acquisition [7]. In the plot the red dashed line represents
a smoothly broken power-law model that best fits the DAMPE data in the
range 55 GeV to 2.63 TeV. The direct measurements from the space-borne
experiments AMS-02 and Fermi-LAT, together with the indirect measure-
ment by the H.E.S.S. experiment.

The all-electron spectrum shows, for the first time, a break in correspon-
dence of 0.9 TeV, consistent with the 1 TeV break obtained (by indirect
measurements) by ground-based experiments, such as H.E.S.S [8] and VER-
ITAS [9]. The analysis of the spectrum shows a softening of the spectral
index γ from -3.1 to -3.9: this feature is expected by the radiative energy
loss of electrons and positrons [10]. To explain the data different theoretical
models have been considered; among all, the case of CRs released during the
final life stages (∼ 105 years) of a smoothly distributed SNRs, cooled by
radiative losses, seems to naturally explain the break.

To evaluate the traveled distance of the incoming particles, in case of electrons
and positrons, we consider a diffusive model, where no other physical process
is considered:

dNi

dt
= D∇2Ni → N(x, t) =

N0√
πDt

e−
x2

4Dt (2.5)

A gaussian path-length distribution is expected in the purely diffusive prop-
agation obtaining that particles move on average of λ ≈ (2Dt)1/2.
Considering the energy dependence of the diffusion coefficient, the distance
traveled by particles could be written as its time integral:

λ(E,E0) =

(∫ τ(E)

0

D(E
′
)dτ

′
)1/2

=

(∫ E

E0

D(E
′
)dE

′

b(E ′)

)1/2

(2.6)

The mean galactic value for D is approximately 1029 cm2s−1 and, considering
only energy losses by Inverse Compton (IC) and syncrotron, the distance
traveled by the electrons with 1 GeV energy is 10 kpc.
Neglecting the energy dependence of the diffusion coefficient, is possible to
evaluate the distance: λ ∝ E−1/2.
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Radiative losses need to be considered if we want estimate the maximum trav-
eled distance of electrons and positrons; λ permits to evaluate the distance
traveled by the particles. Figure 2.2 shows the relation between the energy
of the particles and the traveled distance: for increasing particle energy, the
distance of propagation quickly decreases: for example, 1 TeV electrons mea-
sured at Earth are constrained to a maximum origin distance of 30 pc from
our planet.

Table 2.1: Maximum distance of propagation for electrons

Distance (Kpc) Energy (GeV )

9 1
3 10
1 100

0.03 1000

Figure 2.2: Fraction of flux intensity loss for e+ and e−, as function of their
energy and traveled distance [11]. These particles have strong radiative cool-
ing and arrive at Earth if produced within few Kpc around it.
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Due to their large energy losses, it seems not plausible (contrary to the case
of protons and nuclei) that the observed electrons originate from a uniform
distribution of sources in the Galaxy. If the source is too far, the probability
that an electron reaches the Earth is extremely small. More likely, primary
high-energy electrons observed on Earth originate from a small number of
sources well localized in space and relatively close (on a scale of galactic
distances) to the Solar System, as shown by figure 2.3.

Figure 2.3: Most powerful known sources within 3 Kpc from the Sun [12].
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Figure 2.4: Electron flux [13]. Several cuts have been added to each sin-
gle graph considering different distances for incoming particles. Fluxes are
multiplied to E3 to better highlight slope variations.

In figure 2.4 is presented the electron fluxes from a smooth SNR distribution
[13] from a very fewKpc from Earth; the contribution from different distances
have been separated, considering different distances; in order to evaluate the
relevance of the sources of electrons and positrons relatively far into the entire
measured flux. Looking at the results, on both graphs the whole spectrum
is practically coincident with the electron flux relative to particles coming
from a distance smaller than 3 Kpc. We can argue that less than 10% of the
electrons come from distances bigger than 3 Kpc.

Due to the features of the propagation distance of electrons and positrons,
the analysis of the properties of cosmic ray ele and pos provide important
information to study the sources in the galactic neighborhood. The measure-
ment of such channel is, therefore, one of the most relevant investigation of
the majority of detectors for direct detection of cosmic rays in space.
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2.2 Isotropy and Anisotropy in cosmic rays

In this section we are going to introduce the important concepts of isotropy
and anisotropy of cosmic rays, on which all the other chapter of this work will
be based. The search for patterns in the incoming direction of charged cosmic
rays is important not only to provide information on the distribution of
sources in the galactic neighborhood, but it can be also studied to investigate
and provide an explanation fort he unexpected behavior of the cosmic rays,
that could be due to new physics effects.

Figure 2.5: Trajectory of a simulated cosmic ray, with energy ∼ 10 TeV, in
a 1µG turbolent magnetic field. Note: distance scales are in units of Kpc.

As we briefly stated, at the beginning of section 1.4, while arriving to our
detectors, cosmic rays don’t travel linearly; on the contrary they continuously
change direction because of non collisional scattering processes with magnetic
field inhomogeneities.

A simulation of this process is shown in figure 2.5, where a cosmic ray
of energy ∼ 10 TeV propagates through a 1 µG turbulent magnetic field3, a
value similar to the one in our galaxy.

3Due to guide center decomposition procedure, a charged particle’s motion in a mag-
netic field can be decomposed in three quasi-periodic components: gyration around the
field lines, bouncing between the mirror points along them and drifting normal to the
field line and to the field gradient.
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Due to the randomization of the charged cosmic ray trajectories, the flux
of charged cosmic rays at Earth is extremely isotropic. This means that
we do not observe a macroscopic, dominant, direction of arrival of cosmic
rays. However, in case of few localized nearby sources as for high energy
electrons and positrons, the randomization is not completely efficient, and
several models predict a residual anisotropy in the arrival direction of elec-
trons and positrons. As of today, however, no anisotropy has been measured
for the e+/e− channel, and only upper limits have been set.

δ =
Imax − Imin
Imax + Imin

(2.7)

Equation 2.7 defines isotropy amplitude; that’s the difference between flux
intensity in direction of the dipole minimum and maximum respectively, nor-
malized to their sum.

• experimental results indicate only negligible amounts of anisotropy at
low energies, with δ increasing with energy;

• below E ≈ 10GeV , solar modulation affects the original directions of
the cosmic rays;

• for higher energies, direction of maximum excess is close to that of the
Local Supercluster of Galaxies.

2.3 Possible sources of the positron excess

The positron fraction, shown in section 1.6, clearly shows that a new positron
source should exists; both nearby astrophysical sources, such as pulsars or
SNRs4, and dark matter annihilation process could contribute to the excess.
In this section we are going to provide a set of observable that could provide
information to distinguish the nature of the primary source that dominates
the production of primary electrons and positrons to explain the positron
fraction rise.

4Super Novae Remnants
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Dark matter is supposed to permeate all the galactic halo and our surround-
ings; for this reason we expect the arrival directions of dark matter annihila-
tion products to be distributed isotropically5 [14]. On the contrary, particles
produced by pulsars (or others point-like astrophysical sources) arrive from
a certain localized space region and the distribution of their directions is
expected to be anisotropical.

In the next few lines some examples of expected dipole anisotropy for SNRs
and PWNs models will be provided. Since the Vela SNR is the most intense
local source, it has been taken as example, while Geminga and Monogem
have been chosen as main representative examples of PWNs.

The study of the spectrum of the positron fraction alone is not sensi-
tive enough to distinguish between the model proposed, as discussed in [15].
The assumption that a Dark Matter origin of primary electron and positron
spectrum would show a sharp cut-off (at the value corresponding to the par-
ticle’s mass) while in the positron fraction spectrum an astrophysical source
would present a smoother decline is a simplistic picture. For example, a
combination of several channels for the annihilation of dark matter particles
(including the hadronic ones) can result in a smooth, non sharp, decrease in
the positron fraction. On the contrary, an opportune combination of young
and nearby pulsars could explain the positron fraction data and produce a
steep spectral descent, mimicking what expected for simple models in which
DM annihilates directly to electron and positron pairs.
In this framework the anisotropy study of the arrival directions of electrons
and positrons could be really helpful to distinguish between different models,
producing more robust conclusions.

A search for anisotropies in CR electrons and positrons was performed by
PAMELA [16], AMS-02 [17, 18] and Fermi-LAT [4, 19] experiments (with a
technique described in section 4.5): no anisotropy has been found, and only
upper limits have been set.

The Fermi-LAT experiment searched for an e+ + e− anisotropy in the
first year [4] and 7 years [19] of data, with energies above 60 GeV in order to
minimize the effects of the geomagnetic field and the Heliospheric Magnetic

5Other theories provide a different description of the dark matter distribution into the
galactic halo; DM subhalo are restricted dark matter domains, whose annihilation prod-
ucts thus result anisotropically distributed. Distinguish between a point-like astrophysical
source and a DM subhalo results particularly complex.
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Field, both affecting the direction of detected charged particles in the GeV
range. The upper limits ∆e++e− have been obtained from spherical harmonics
based analysis, particularly similar to the one used in this work. In case of low
statistic samples the upper limits (ULs), at 95% CL, range from ∆e++e− =
0.005 to ∆e++e− = 0.010. Though the analysis of 7 years of data, ULs at
95% CL cover an interval from 3 · 10−3 to 3 · 10−2 .

The PAMELA experiment has performed a search on large-scale positron
dipole anisotropy with the first four years of data. The sample consists
of 1489 e+ with rigidity 10 ≤ R ≤ 200 GV. To account for the instrument
exposure, and other detector effects, the results are given in terms of positron
over proton ratio6. Also in this case an upper limit, ∆e++e− = 0.166, at 95%
CL has been fixed.

Figure 2.6: Predictions for the dipole anisotropy in the e+ + e− flux from
single SNRs, for and Rcut = 0.7Kpc [20]. The energy bins are integrated in
energy from Emin up to 5 TeV. The downward arrows represent the Fermi-
LAT upper limits for the 2010 analysis, based on 1 year of collected data.

6At these energy values the distribution of the incoming directions of the protons is
isotropic.
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It should be noted that the upper limits discussed refer to different observ-
ables: e+ + e− for Fermi-LAT, e+/e− for AMS-02 and e+ for PAMELA.

Figure 2.6 is the result of an all-electron flux simulation showing the predicted
anisotropy for a near SNR. Case 1 and 2 refer to different methods to inject
model parameters.

The anisotropy value is an increasing function of the energy, at least up
to few hundreds GeV, depending on the model chosen. For Emin below 200
GeV, the Fermi-LAT upper limits lie in the Vela anisotropy band, while for
higher energies the experimental limits are at least a factor of two higher
than the maximal expected ∆e+e−.

Similar simulations has been realized to predict anisotropy values for near
PWNs.

Figure 2.7: Predictions for the anisotropy from single PWNe in the e+ + e−

flux, along with experimental upper limits from Fermi-LAT [20]. The energy
bins are integrated in energy. The results are for the five most powerful
PWNs, as labeled inside the panels.
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The Fermi-LAT upper limits, as graph in figure 2.7 clearly shows, are several
orders of magnitude higher respect to the expected anisotropy level. Fermi-
LAT sensitivity rapidly diminish with the increasing energy, highlighting the
impossibility to provide a measure of ∆e+e− .

The search for anisotropies in the electron and positron channel is an ex-
tremely complicated scenario: as of today, the upper limits set by Fermi-
LAT, PAMELA and AMS-02 on different observables are used to limit the
parameter space of astrophysical models that could explain the positron frac-
tion rise.

The expected anisotropies are very faint at low energies even for the
limits set by the most sensitive detector Fermi-LAT, but increase at higher
energies. Measurements from the most recent generation of cosmic ray direct
detection experiment may provide additional information to the scenario,
by providing an independent search for anisotropies that could confirm, or
possibly improve, the current limits.

DAMPE is a new generation calorimetric experiment, that has been de-
veloped to improve the energy resolution and containment for cosmic rays
in the TeV region. The data collected by the detector can be analyzed to
search for anisotropies especially at the high energy regime.

In this thesis, the sensitivity of DAMPE for the search of anisotropies in
the cosmic rays will be studied.
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Chapter 3

The DAMPE Detector

Figure 3.1: Schematic view of the DAMPE detector [21].

The DArk Matter Particle Explorer (DAMPE), is a detector on board of a
satellite, successfully launched into a sun-synchronous orbit1 on 2015 Decem-
ber 17th, from the Jiuquan launch base.

This detector offers a new opportunity for advancing our knowledge of
cosmic rays, dark matter, and gamma-ray astronomy. DAMPE is able to

1This is the primary observing mode, at the altitude of 500 km; DAMPE is expected
to cover the full sky at least four times in two years.
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detect electrons/positrons, gamma rays, protons, helium nuclei and other
heavy ions in a wide energy range with much improved energy resolution
and large acceptance, compared to AMS-02 and Fermi-LAT.

The main goals of the experiment are the following:

• understanding the mechanisms of particle acceleration operating in as-
trophysical sources and the propagation of cosmic rays in the the Milky
Way;

• probing the nature of dark matter;

• studying the gamma-ray emission from Galactic and extragalactic sources.

Respect to Fermi-LAT, DAMPE is capable to distinguish electrons from the
hadronic background up to one over 106; having an high rejection power is a
fundamental characteristic in order to realize anisotropy measurements.

Figure 3.2: Discrimination between electrons and protons in the BGO in-
strument (section 3.0.3) of DAMPE [7].
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To separate electrons and positrons from the proton backgound, different
techniques have been used: (a) comparison between MC simulations of hadronic
and electromagnetic showers inside the calorimeter and the acquired data,
intensive beam tests at CERN facility and boost decision trees.

The plot in figure 3.2 shows the rejection power of DAMPE flight data,
with energies between 500 GeV and 1 TeV; both the electron (the lower
population) and proton candidates (the upper population) are clearly recog-
nizable. Flast represents the ratio of energy deposited in the last BGO layer
to the total energy deposited in the BGO calorimeter. The shower spread is
defined as the summation of the energy-weighted shower dispersion of each
layer.

The DAMPE collaboration published in 2017 an article [7] highlighting, for
the first time in the case of a space experiment, a break in the all-electron
spectrum, as shown in figure 2.1.

The accurate measurement of the proton’s spectrum is one of the goals of
the experiment; figure 3.3 is a projection of the flux over three years of data
acquisition, compared with other experiments.

Figure 3.3: Three years projection of the proton spectrum measurement of
DAMPE experiment, compared with other ones.

DAMPE is capable to precisely measure photons energy up to the TeV; in
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figure 3.4 is represented a preliminary gamma sky map, for photons with
energy bigger that 1 GeV.

Figure 3.4: Preliminary DAMPE γ sky map, with energy bigger that 1 GeV.

As explained in section 1.5, photons may be the final state of annihilating
DM particles; differently from all the other particles, γ do not interact with
galactic magnetic field, maintaining so the information on the incoming di-
rection. That is the reason why their study is particularly important.

Respect to other experiment, such as AMS-02 and Fermi-LAT, DAMPE is
capable of precise and accurate energy measurements from 5 GeV up to 10
TeV for electrons (positrons) and photons, while for the adronic component of
the cosmic rays energy ranges from 50 GeV to 100 TeV. The electromagnetic
calorimeter is characterized by a depth of 32 radiation lengths (compared
with the 8.6 of Fermi-LAT and 17 of AMS-02 ) and an energy resolution of
the 1.5% at 800 GeV2; differently from the other, Fermi-LAT in particular,
DAMPE is capable of precise energy measurements in narrow energy bins,
a feature particularly useful for the study of the anisotropy of the incoming

2This value refers to electrons and photons. In case of protons or heavy nuclei the
energy resolution is less than 40% at the same energy.
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directions of the charged CRs. All the detectors guarantee an high rejection
power of 106 from the proton background, from the 300 times to 800 times
bigger respect to the electron flux.

Considering all the characteristics until now explained, DAMPE is a powerful
instrument to perform anisotropy measurements in the incoming direction of
charged CRs; all the techniques and the developed analysis methods will be
explained in the next chapters.

Figure 3.1 shows a schematic view of the DAMPE detector, from top to bot-
tom: a Plastic Scintillator strip Detector (PSD), a Silicon-Tungsten tracKer-
converter (STK), a BGO imaging calorimeter and a NeUtron Detector (NUD).

Table 3.1: Summary of the design parameters and expected performance of
DAMPE instrument [21]

Parameter Value

Energy range of γ-rays/electrons 5 GeV - 10 TeV
Energy resolutiona of γ-rays/electrons ≤ 1.5% at 800 GeV
Energy range of protons/heavy nuclei 50 GeV - 100 TeV
Energy resolutiona of protons ≤ 40% at 800 GeV
Effective area at normal incidence (γ-rays) 1100 cm2 at 100 GeV
Geometric factor for electrons 0.3 m2sr above 30 GeV
Photon angular resolutionb ≤ 0.2° at 100 GeV
Field of View (FoV) ∼ 1.0 sr

Notes: a σE/E assuming Gaussian distribution of energies. b At 68%
containment radius.

3.0.1 The Plastic Scintillation array Detector (PSD)

The main purpose of this detector is to provide a charged particles back-
ground rejection for the photon measurement, together with the precise mea-
surement of the high energy particle’s charge Z in a wide range, Z ≤ 26.
DAMPE is equipped with two PSD layers, each one with an effective area
of 82cm × 82cm; the whole sub-detector consists in 82 plastic scintillator
bars, each with a double layer configuration, where the upper layer ones
are placed orthogonally to the bottom ones. Each of them is 88.4 cm long
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with a 2.8cm× 1.0cm section; signals are readout by two Hamamatsu R4443
Photomultiplier Tubes (PMTs) coupled to the ends of each scintillator bar.
The bars of the two layers of a plane are staggered by 0.8 cm, allowing a
full coverage of the detector with the active area of scintillators without any
gap3.

As the efficiency of a single layer is greater than 0.95, the PSD provides
an overall efficiency ≥ 0.9975 for charged particles.

The segmented structure of the PSD allows to suppress the spurious veto
signals due to the backsplash effect, which can lead to a misidentification of
gamma rays as charged particles. This phenomenon was observed in EGRET
and was found to be significant for photon energies in the GeV region and
above. A similar choice of the segmented design was adopted in the AGILE
and the Large Area Telescope onboard the Fermi telescope (Fermi-LAT ),
both equipped with anti-coincidence detectors consisting of plastic scintilla-
tor tiles.

Figure 3.5: Reconstructed charge spectra of PSD for nuclei with A/Z = 2,
generated by a 40 GeV/n 40Ar beam [21]. The helium peak has been removed
for clarity.

Since the PSD is used to identify the nuclei charge (from helium to iron, as
shown in figure 3.5), a wide dynamic range extending up to ∼ 1400 times the
energy deposition of a minimum ionizing particle (MIP)4 is required. To cover

3To minimize the materials used in the active area, the mechanical support is mainly
made by honeycomb boards with Carbon Fiber Reinforced Plastics (CFRP)

4A singly charged MIP at normal incidence, which is assumed as reference, deposits on
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such a broad range with good energy resolution, a double dynode readout
scheme for each PMT has been implemented. Signals from the dynode with
high gain cover the range from 0.1 MIPs to 40 MIPs, while those from the
dynode with low gain cover the range from 4 MIPs to 1600 MIPs; the overlap
region can be used for cross calibration.

PSD performances have been tested through beam test experiment at CERN
facility, using relativistic ions beams.

Figure 3.5 clearly shows that nuclei from litium (Z = 3) up to argon (Z =
18)5 were correctly recognized.

3.0.2 The Silicon-Tungsten tracKer-converter (STK)

Like the PSD, the STK detector has been designed to pursuit different goals,
such as the precise particle track reconstruction with a resolution better than
80 µm for most of the incident angles, the measurement of the electrical
charge of incoming cosmic rays and the γ photoconversion up to electron/-
positron couples.

The STK is characterized by six double-planes of silicon detectors, with a
total sensitive area6 of ∼ 7 m2; multiple tungsten layers have been inserted
in the tracker structure, in order to perform the photo-conversion of high
energetic γ rays (with energy above ∼ 5 GeV). The total length available for
the process is 1.425 X0, leading to a conversion efficiency of the 65%.

The overall sub-detector must present lightness and strength as main
structural characteristics, in order to withstand the vibrations and accelera-
tions during the launch. The alignment of each tungsten plate with respect
to the 4 corners of the tray has been checked with a X-ray scan at CERN.

The STK detector is equipped with a total of 768 single-sided AC-coupled
silicon micro-strip detectors (SSD), while the total strip length along a ladder
(the union of four SSDs) is about 37 cm. Each silicon layer consists of 16
ladders, as shown in the top image of figure 3.6.

average about 2 MeV in a single PSD bar.
5The Birks-Chou law permits to extend the results up to the iron nuclei, Z = 26.
6Comparable with the total silicon surface of the AMS-02 tracker.
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Figure 3.6: (top) Schematics of DAMPE’s STK, complete of the radiators
and the Tracker Readout Boards (TRB) [21]. (bottom) Image of a ladder,
complete of PCB cable, front-end electronics and four SSDs [21].

The silicon ladders on the bottom surface of each tray are placed orthogonal
with respect to the ones of the top surface of the lower tray, in order to mea-
sure the X-Y coordinates of the incident particles (note that the Z coordinate
of each plane is precisely known)7. This permits to obtain a full 3D tracking
of all the particles crossing the sub-detector.The inter-distance between two
consecutive silicon layers is ∼ 3 mm.

7AMS-02, at the contrary, is equipped with double-face SSDs; this permit to reduce
the thickness of the particle crossed material, decreasing in turn the multiple-scattering
effects.
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Table 3.2: Summary of designed parameters of STK [21]

Parameter Value

Active area of silicon detectors 0.55 m2 × 12 layers
Thickness of each silicon layer 320 µm
Silicon strip pitch 121 µm
Thickness of tungsten layers 3 × 1mm
Total thickness of the converter 1.425 (X0)
Spatial resolutiona < 80 µm within 60° incidence
Power consumption 82.7 W
Total mass 154.8 kg

Notes: a 68% extension range.

The readout is done one every other strip (corresponding to 384 channels
per ladder and a pitch of 240 µm), in order to keep a good performance
in terms of spatial resolution, and at the same time reduce the number of
readout channels. Both the acquisition process and power supply functions
are performed by the Tracker Readout Boards (TRB), mounted on the side
of the tray, as shown in figure 3.6 (top); each of them is connected to 24
ladders.

Figure 3.7 highlights two important characteristics of the STK; the top one
refers to the charge ID, showing a clear particle identification up to the
oxygen (to better represent all the distributions, Z = 1 particles have been
removed from the sample).

The bottom figure shows the spatial resolution of the STK planes, as func-
tion of the incoming particles angles; as the graph highlights the minimum
resolution is in general obtained with an incidence angle of 20°. In this case
the charged particles cross a thicker quantity of Silicon, respect to the case of
normal incidence; the bigger energy deposit permit to better interpolate the
incidence point. For highly inclined particles crossing, at the contrary, the
produced charge is splitted on numerous strips, obtaining a worse resolution.
considering the capacitive-readout (analog readout) of the energy deposits,
when the produced charge is divided on an high number of strips.
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Figure 3.7: (top) STK signal mean distribution for nuclei produced by a
lead beam on target, after removing Z=1 particles [21]. The signal mean,
with current reconstruction procedures, allows for the identification of ions
until Oxygen. (bottom) Spatial resolution for different STK planes as a
function of particle incident angle for cosmic rays data at ground [21].
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3.0.3 The BGO calorimeter (BGO)

The BGO calorimetr on board of DAMPE experiment has three main pur-
poses: measuring the energy deposition of incident particles, imaging the
3D profile (both longitudinal and transverse) of the shower development and
providing the level 0 trigger for the data acquisition system.

Figure 3.8: Schematic view of the DAMPE BGO calorimeter [21].

Table 3.3: Summary of designed parameters and expected performance of
the BGO calorimeter [21].

Parameter Value

Active area 60 cm × 60 cm (on-axis)
Depth (radiation lengths) 32
Sampling ≥ 90%
Longitudinal segmentation 14 layers (' 2.3 rad. lengths each)
Lateral segmentation ∼1 Molière radius

The DAMPE imaging calorimeter characterized by 14 layers of BGO bars (as
represented in figure 3.8), 2.5×2.5 cm2 in cross section and 60 cm in length.
The total of 336 bars have an hodoscope arrangement with a thickness of 32
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radiation length8. Each crystal is readout by two Hamamatsu R5610A-01
PMTs; in order to increase the dynamic range 3 dynodes of each PMT are
connected to the VA based readout system. The PMTs are coupled to the
crystal with optical filters, which have the role to attenuate the scintillation
light produced in the BGO.

For electrons and photons, the detection range is 5 GeV – 10 TeV, with
an energy resolution of about 1% at 800 GeV.

For proton and ions in the cosmic rays, the expected detection range is
100 GeV – 100 TeV, with energy resolution better than 40% at 800 GeV.

The ground calibration of BGO has been performed using both the data
collected in a beam test campaign at CERN (figure 3.9) and cosmic ray data
collected from ground. The calibration procedure includes the measurement
of the pedestals, the evaluation of the calibration constants from the MIP
peaks, the evaluation of the dynode ratios, and the measurement of the bar
attenuation lengths.

Figure 3.9: Energy reconstructed as a function of the incident energy of the
electron beam. Red triangles shows the beam test data, and the open blue
circles shows the simulation.

8Detailed evaluation of the longitudinal and trasversal containement of the BGO sub-
instrument may be found in appendix D.
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3.1 The NeUtron Detector (NUD)

The main purpose of the neutron detector is to perform electron/hadron
identification, using the neutrons produced by the hadron interactions in the
BGO layers. In fact, for a given initial particle energy, the neutron content of
a hadronic shower is expected to be one order of magnitude larger than that
of an electromagnetic one; once the neutrons are created, they are quickly
thermalized in the BGO calorimeter, and the total neutron activity over a
few microseconds is measured by NUD.

Figure 3.10: Schematic view of the DAMPE NeUtron Detector (NUD) [21].

Table 3.4: NUD designed parameters [21].

Parameter 4 Plastic Scintillators (10B)

Active area 61cm × 61cm
Energy range 2 - 60 MeV for single detector
Energy resolutiona ≤ 10% at 30 MeV
Power 0.5 W
Mass 12 Kg

Notes: a σE/E assuming Gaussian distribution.

The detector is characterized by four 30 cm× 30 cm× 1.0 cm blocks of boron-
loaded plastic scintillator, each one wrapped with a layer of aluminum film for
photon reflection, anchored in aluminum alloy framework by silicone rubber,
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and readout by a PMT. The scintillators are embedded with wavelength shift
fibers for optical transmission, in order to reduce the fluorescence attenuation
and increase photon collection efficiency; signals are readout by corner-on
Hamamatsu R5610A-01 PMTs.

10B + n→7 Li+ α + γ (3.1)

Equation 3.1 describes the process that transforms the neutrons generated9

in the BGO calorimeter into γ rays, in turn read by PMTs. These neutron
captures are the dominant source of photon generation in the NUD, after ∼
2 µs from the initial calorimeter shower.

Figure 3.11: NUD signals for protons and electrons with an energy of ∼ 150
GeV deposited in the BGO calorimeter (the distributions are normalized to
unit area).

Figure 3.11 shows the different signals realeased by electrons and protons
into the NUD detector.

9About 600 optical photons are produced in each capture.

63



3.2 Performing anisotropy measurements with

DAMPE

In chapter 3 some of the main characteristics of the DAMPE detector have
been analyzed. In this section we are going to describe all the characteristics
that make this instrument particularly suited for anisotropy measurements,
particularly at high energy.

Respect to other experiments, such as AMS-02 and PAMELA, DAMPE is
characterized by a bigger geometrical acceptance; this permits to obtain an
higher statistic sample with a reduces observation acquisition time.

DAMPE is equipped with a deep imaging electromagnetic calorimeter of
32 interaction lengths X0 (compared with the 8 X0 of Fermi-LAT and 17
X0 of AMS-02 ), capable of precise and accurate energy measurements for
γ and e+/e− up to 10 TeV, with an energy resolution ≤ 1.5% at 800 GeV.
All these features permit a detailed study of the measured all-electron and
photon spectra in each energy bin.

In section 2.3 have been analyzed the expected anisotropy values for dif-
ferent types of sources; an high rejection power of the proton flux is thus
required to reach the goal10. Thanks to the joint work of its detectors (see
3 for more details) DAMPE has an e/p discrimination power of 105, higher
respect to the value reached by Fermi-LAT.

All these characteristic bestow DAMPE as a great candidate to accomplish
anisotropy measurements, especially at the higher energies.

10The proton flux is ∼ three orders of magnitude higher respect to the electrons, and
from 4 to 5 times higher respect to the positrons (figure 1.1). More details can be found
in chapter 1)
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Chapter 4

Tools for the anisotropy study

The information on the anisotropy of the arrival direction of cosmic rays
can be extracted from the analysis of the so-called ”exposure maps”, which
are the distributions of the arrival coordinates of each event in the selected
coordinate frames. The exposure maps contain a dominant level of anisotropy
that is induced by the limited exposure to which the experiment has observed
different portions o the sky. Areas of the sky with higher exposure contain
a lager number of events, and viceversa. This effect results in a background
anisotropy, that has to be taken into account when searching for physical
anisotropy effects. Therefore, the knowledge of the exposure maps that the
experiment would collect in the hypothesis that the flux of cosmic rays is
100% isotropic is of primary importance. It affects, in fact, the level of
sensitivity to which an anisotropy can be detected.

This work is based on the development of the techniques for the definition
and construction of the ”reference” exposure maps to which to data exposure
maps have to be compared to determine the level of anisotropy in the data.

A technique to obtain simulated data sky maps, at different energy and in-
jected values of anisotropies (see section 5.1 for the details), has been devel-
oped to properly calculate the detector sensitivity in the different situations.

The analysis developed in the context of this work can be applied to real
flight data - after definition of the procedures to select the signal events - to
evaluate the level of anisotropy or its upper limit by comparison of the data
exposure map with the simulated reference maps.
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In this chapter the tools developed to perform anisotropy measurements will
be described:

• the study of the geometrical factor and the exposition of the detector,

• the realization of reference maps,

• a brief description of the multipole analysis technique;

• the development of template-fit procedures.

The geometrical factor of the detector, obtained in section 4.2 through MC
simulations, is fundamental to correctly evaluate its FoV 1 and for the expo-
sition study.

The reference maps, as better explained in section 4.4, provide an image
of the sky considering the exposition of the detector assuming an isotropic
distribution of the cosmic rays. These maps, compared with data, allow to
quantify a possible presence of anisotropy, through the application of math-
ematical tools.

4.1 Galactic and Geographic coordinate sys-

tems

When a cosmic ray event is detected by DAMPE, the information on its
incoming direction is provided in the so-called ”local” coordinate system.
However, since any anisotropy in the incoming direction of charged cosmic
rays is expected to be correlated with the direction of astrophysical sources
with respect to the observer, the most suitable reference coordinate system
for the exposure maps are galactic coordinates.

Figure 4.1 is an artistic representation of the galactic coordinate reference
system, used in many of the following maps. The Sun is fixed in the center of
the coordinate system, the primary direction is aligned with the approximate
center of the Milky Way and the fundamental plane, parallel to the galactic
plane, is moved north.

1Field of View
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Figure 4.1: Representation of the galactic coordinate system.

The longitude l measures the angular distance of an object eastward along
the galactic equator from the galactic center, while the longitude b measures
the angle of an object positioned north or south of the galactic equator, as
viewed from Earth. Both l and b are measured in degrees.

To represent the orbits of the detector, or the mean acquisition rate, the
geographic coordinate system is often used; it is the same method utilized to
evaluate the latitude and longitude of a point of the surface of our planet, as
explained from the plot in figure 4.2.

A set of C/C++ functions, part of the DAMPE collaboration software, have
been used to transform the directions of the incoming particles from the
local frame of the detector to galactic coordinates, taking into account the
direction pointed by the satellite, expressed in galactic coordinates and the
time-dependent position of the satellite, expressed in geographic coordinates.
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Figure 4.2: Representation of the geographic coordinate system.

4.2 The acceptance of the DAMPE experi-

ment

The portion of the sky observed by the detector is determined by its opening
angle and its dimension. These two factors are quantified by the so-called
”acceptance” of the detector. The acceptance of a detector is usually quan-
tified by MonteCarlo simulations of the detector geometry and of the inter-
actions of the particles with the detector material. For this sensitivity study,
we have produced a preliminary estimation of the detector acceptance by a
simple MC simulation in which:

• we assume that DAMPE detects all and only the cosmic rays whose
track crosses the upper and lower plane of the BGO calorimeter; in
fact, even if the STK dimensions are larger then to the BGO ones,
particle tracks without associated energy measurements are unusable.
The detector is thus simplified as a parallelepipedon, having the same
dimensions as the DAMPE BGO calorimeter;

• we neglect the interaction of the particles with the detector material,
assuming that most of the interesting events do not fragment in the
PSD or STK and that the direction of the shower reconstructed in
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the BGO calorimeter corresponds to the real incoming direction of the
cosmic ray.

The geometrical factor is an important and specific characteristic of each
particle experiment, connecting the particle counting rate with the spectral
intensity.

C(~x) =

∫
S

d~σ · r̂
∫

Ω

dω

∫ ∞
0

dE×

×
∑
α

εα(E,~σ, ω, t)Jα(E,ω, ~x, t)
(4.1)

Equation 4.1 express a telescope counting rate of particle as function of the
observation time t, its surfice S and the direction of the incoming particles r̂,
the solid angle ω explored, the efficiency εα

2 and the spectral intensity Jα [22].
Several simplifications and approximations may be applied to equation 4.1,
making the analitic calculation simpler. In the case of a simple geometric
shape as that described before, it is even possible to provide an analytical
estimation of the detector acceptance.

The geometrical factor has been computed using a Monte Carlo simulation
based on a simplified geometry of the detector, represented in figure 3.1,
comparing the obtained results with the analytic calculations.

G = πS
Nacc

Ngen

(4.2)

G(θ, φ) = πS cos θ
A(θ, φ)sel
A(θ, φ)gen

(4.3)

Equation 4.2 is used in the MonteCarlo simulation to compute the integrated
geometrical acceptance; Nacc/Ngen is the ratio of the events crossing the
detector respect to the total sample, while S is the surface of the generating
plane.

2α refers to the specific particle type; the efficiency, infact, highly depends on the
particle analyzed.
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Equation 4.3 represents the differential geometrical acceptance, expressed in
function of the angles θ and φ in the local frame of the detector; A(θ, φ)sel
is the selected distribution of events crossing the simple geometry, while
A(θ, φ)gen is the distribution of the whole generated events. S, as in the
previous case, is the surface of the generating plane.

In all these calculations we are supposing an isotropic flux of the cosmic
rays; systematic uncertainties eventually present need to be discussed during
the data analysis procedure even if significant discrepancies are not expected
due to the small value of the expected anisotropy.

Figure 4.3: Schematic view of the general simulation process and DAMPE’s
simplified geometry.

Figure 4.3 is a sketch of the MC simulation, also including the used detector
simplified geometry. The figure includes the representation of a general gen-
eration plane, used to generate the particles, than propagated to the detector
layers.
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The graph in figure 4.4 is a 3D representation of the differential acceptance,
obtained with the Monte Carlo simulation. The graph clearly shows a peri-
odic structures in cos(θ) and φ angles in the local reference frame describing
the incoming direction of a particle; this is the result of the rectangular profile
of the detector inserted in an environment where cosmic rays are propagated
using spherical coordinates.

Figure 4.4: Lego plot of the differential acceptance in cos(θ) and φ, angles
in the local reference frame describing the incoming direction of a particle.
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Figure 4.5: (top) Distribution of the geometrical acceptance of the detector.
(bottom) Distribution of the relative difference between simulated geomet-
rical acceptance and the analytic one.

Figure 4.5 show the main results of the Monte Carlo simulation: the geo-
metrical acceptance (top graph) and the relative difference with its analytic
value (bottom graph). The acceptance computed in our approximation is
compatible with the geometrical factor shown in table 3.13, confirming that
the assumptions are reasonable and verified.

More details and graphs regarding the toyMC simulations may be found in
appendix E.

3Considering that no physical interactions between particles and the detector have been
considered (toyMC simulation).
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4.3 Calculation of DAMPE exposure

To calculate the DAMPE exposure, the time dependent information on the
satellite position and orientation are needed. These are available in the SBI
(”Second Based Information”) database, that provides information second
of data acquisition of the mission. The SBI files contain second based infor-
mation of the detector and the host satellite, regarding the position, speed,
tracking, Earth’s magnetic field intensity, the number of detected events, the
status of the whole system and the information on the Livetime of the de-
tector. The livetime, defined as 1 - deadtime, defines the fraction of time in
which the detector is able to record the trigger of an incoming cosmic rays
and it has to be taken into account in the definition of the reference maps.

The exposure of the detector may be obtained reading the SBI files and
extracting the information regarding the position and tracking; DAMPE was
launched into a sun-synchronous orbit at the altitude of 500 Km, expecting
to reach the whole sky coverage in 4 years [21].

During its mission, DAMPE will not observe the sky homogeneously, due
to its orbits and the limited field of view (read section E for the details
regarding the geometrical factor).

In this work the period ranging from 27th December 2015 to 28th June 2018
has been considered, excluding the calibration and detector’s down times.

Figure 4.6: Orbits of the the host satellite in geographic latitudes.
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Figure 4.6 represents the orbits of the host satellite in geographich latitudes.
Each entry in the histogram represent 1 second of the data acquisition. The
satellite spends large fraction of its time in the northern geographic poles.
The missing time at latitude 20°C is due to calibration of the detector and
data acquisition reset, that is always done in that region.

Figure 4.7: Acquisition rate of the detector, in Hz, as function of the galactic
coordinates.

The graphs in figures 4.6 and 4.7, obtained considering a period of 914 days,
represent respectively all the orbits of the satellite (the typical orbit pattern
is visible) and DAMPE’s acquisition rate, both in function of the geographic
coordinates.

The rate visible in figure is coherent with the expected result; considering
the geomagnetic-cutoff, more intense at latitudes closer to zero, the number
of triggered particles at the higher latitudes is expected to be bigger.
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4.4 Realization of reference maps

Due to exposition-related phenomena (as explained in section 4.3) a perfectly
isotropic sky measured by DAMPE appears to be anisotropic; this has to be
considered in the building process of the reference maps. Several different
techniques may be used for this purpose, using Monte Carlo procedures (as
proposed in this work) or directly the acquired data (for example shuffling
techniques [23]).

MC techniques provide an high customizable and scalable procedure; the
reference maps are obtained considering both the position and the tracking
of the detector, information obtained from the Second Based Information
(SBI) DAMPE files. [17]. Here the details of the procedure:

• the telemetric information of the satellite in the target time interval is
extracted from the SBI database;

• for each second, a number N of events, the product of a fixed num-
ber of events4 k multiplied for the live-time of the detector are ran-
domly extracted from the event distribution, that is the distribution of
the incoming direction of the incoming cosmic rays, expressed in func-
tion of the local variables cos(θ) and φ, previously obtained through
MC simulations in section 4.2. Considering the high number of events
produced, a Mersenne and Twister random generator has been used,
implemented through the class TRandom3 of the ROOT framework:
ROOT::Math::TRandomEngine TRandom3();

• the events so obtained are then propagated in galactic coordinates,
building the reference sky map. Custom C/C++ functions, part of the
DAMPE collaboration software, have been used for the transformation
from the local reference frame of the detector to galactic coordinates.

Figure 4.8 is the final product of this process; the plot, representing an
highly-anisotropic sky, highlights the importance of considering the exposure
of the detector. Similar results have been obtained using a slightly different
approach: for each second N events, equal to the mean acquisition rate τ , are

4Several different values for k have been explored: 5, 10, 50, 100, 500, 1000. In order
to minimize statistical fluctuations on the final map, k = 1000 is chosen an default value
from now on.
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extracted from the events distribution. τ is calculated considering the same
SBI files and the satellite position in geographical coordinates (figure 4.7).

The reference isotropic sky maps can also be directly obtained using the
data; however with respect to the Monte Carlo simulations, more complex
procedures, not considered in this work, are required. The shuffling technique
is one of the most used; it consists in the random exchange of the cosmic
rays arriving directions from a data sample, obtained considering a certain
sky portion.

This procedure, usually applied to the photons analysis, cannot be di-
rectly used in case of charged cosmic rays due to their diffusive motion; in
that case, infact, large scale anisotropies may still be present in the final
maps.

Figure 4.8: Reference isotropic high statistic sky map. For the representation
the Aitoff projection has been used.
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Figure 4.8 represents the high statistic isotropic reference sky map5; while it
will be used by the template-fit procedures to extract the anisotropy parame-
ters (see section 4.6 for the details), the event statistics should be sufficiently
high to ignore any kind of statistical fluctuation. More reference isotropic
maps can be found in appendix F.1.

The yellow hot-spots, clearly visible in the map, represent the zones with the
highest particle count; these points correspond to the crossing point of the
various orbit, as may be seen in figure 4.9. Differently from figure 4.6, in
figure 4.9 just few satellite’s orbits are shown.

Figure 4.9: Isotropic reference map, obtained considering 9 hours of data.
Red thick lines highlight tracking of DAMPE.

5Obtained setting k = 1000.
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4.5 Multipole Analysis

The multipole analysis for measurement of the anisotropy in the sky maps is
described in this section.

The search for anisotropy can be powerfully addressed using multipole anal-
ysis, method that we’re going to deeply describe in this chapter. After a
first mathematical introduction to the argument, few simplification will be
introduced for application on the data analysis. At the end of this chapter a
theoretical model to efficiently describe dipoles will be provided.

Multipole analysis can be mathematically described as a special case of a
series expansion, conceptually identical to the Taylor series; as this one, also
multipole expansion can be used to represent a particular function as an
indefinite sum of powers of basis function. Truncating this expansion at a
certain order, an approximation of the original function can be provided; the
more terms will be included in the definite series the more accurate will be
the final approximation.

Since dealing with an high number of elements could be computationally
heavy, even if theoretically could lead to a better estimate of the final result,
choosing an appropriate base of periodic functions permit to obtain a good
result with a significantly lower number of steps.

A multipole expansion is a series expansion of a function defined on the
surface of a sphere; this is particularly useful considering that we have to deal
with the distribution of the cosmic rays arrival directions, that’s a projection
on the surface of the celestial sphere.

In such a series expansion each single term can be identified belonging
to certain multipole orders like monopole, dipole, quadrupole and so forth.
Figuratively spoken they correspond in the electromagnetic case to the field
generated by of one, two or four charges appropriately arranged.

As basis for the expansions, spherical harmonics Y m
l have been chosen:

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (4.4)

Equation 4.4 describes a spherical harmonic of degree l and order m, defined
on a unit sphere in spherical coordinates with longitude φ ∈ [0, 2π] and
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colatitude θ ∈ [0, π], while Pm
l refers to the Legendre polynomial. Being

chosen as a base, the orthonormality condition have to be fulfilled:∫ π

θ=0

∫ 2π

φ=0

Y m
l (θ, φ)Y m′∗

l′ (θ, φ) sin(θ)dθdφ = δll′δmm′ (4.5)

Y m∗
l (θ, φ) = (−1)mY −ml (θ, φ) (4.6)

These functions form a complete basis of the Hilbert space of L2 functions,
any square integrable function defined on a unit sphere can thus be expanded
as a linear combination of spherical harmonics, as expressed in equation 4.7.

f(θ, φ) =
∞∑
l=0

l∑
m=−l

aml Y
m
l (θ, φ) (4.7)

Figure 4.10: Maps representing different analitic multipole orders [1]. The
color scale is linear.

80



From the series shown in equation 4.7, aml represents the expansion coef-
ficients, whose numerical value will be obtained by data fitting procedures
(see section 4.6 for more details). Their analytical form can be explicated as
follows:

aml =

∫ π

θ=0

∫ 2π

φ=0

Y m′∗
l′ (θ, φ)f(θ, φ) sin(θ)dθdφ (4.8)

For the search of anisotropies in the charged cosmic rays, we restrict ourself in
the search for dipole components, qualitatively corresponding to asymmetries
between two sides of the galactic sphere. To this aim, the relevant spherical
harmonics reduce to:

Y 0
0 (θ, φ) =

√
1

4π
(4.9)

Y 0
1 (θ, φ) =

√
3

4π
cos(θ) (4.10)

Y 1
1 (θ, φ) = −

√
3

8π
sin(θ)eiφ (4.11)

Y −1
1 (θ, φ) =

√
3

8π
sin(θ)e−iφ (4.12)

To derive the four corresponding expansion coefficients, the appropriate spher-
ical harmonics are fitted to the data sky maps using the least squares method;
for this reason we are usual to refer to these spherical harmonics as ”template
functions”.

The entire data analysis process we will perform to extract information re-
garding anisotropy dipoles, is based on particles count ratio, which is for sure
a non imaginary number. Spherical harmonic functions we already presented,
at the contrary, are complex functions, this introduces an unnecessary level
of complexity.

We’re now going to introduce few simplification to the multipole expansion,
starting with coefficients and including harmonic functions:
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a−ml = (−1)mam∗l (4.13)

s = Y 0
0 (θ, φ) (4.14)

pz(θ, φ) = Y 0
1 (θ, φ) (4.15)

px(θ, φ) =

√
1

2
(Y −1

1 (θ, φ)− Y 1
1 (θ, φ)) (4.16)

py(θ, φ) = i

√
1

2
(Y −1

1 (θ, φ) + Y 1
1 (θ, φ)) (4.17)

All the simplification introduced permitted to obtain real spherical harmonics
functions, whose can be represented in a two-dimensional sphere, as figure
4.12 represents.

Figure 4.11: Projection of the real harmonic functions p(θ, φ) in a HEALpix
grid [24]. From the top left in clockwise direction there is the north-south,
forward-backward and east-west dipole direction [1]. A linear combination of
these three maps can describe any dipole.

82



These functions will be used as templates for the fit procedures, as explained
in subsection 4.6.

Figures of section 4.4 and 4.3, together with the ones in appendix F show a
different domain, respect to the default one, for the variable of the harmonic
functions; in this work θ ∈ [−π/2, π/2] and φ ∈ [−π, π]. In order to properly
fit the data sky maps a series of variable transformations are needed:

θ′ → θ − π

2
φ′ → φ− π

(4.18)

Considering these variable transformations, reported in equation 4.18, the
modified functions eqs. (4.14) to (4.17) can be written as:

s =
1√
4π

(4.19)

pz(θ, φ) = −
√

3

4π
sin(θ) (4.20)

px(θ, φ) =

√
4

4π
cos(φ) cos(θ) (4.21)

py(θ, φ) = −
√

3

4π
cos(θ) sin(φ) (4.22)

The weightings, or expansion coefficients, of eqs. (4.19) to (4.22) are repre-
sented as d1 (north-south N-S), d2 (forward-backward F-B) and d3 (right–left
E-W); they can be represented in a vector formalism in the following manner:

~ρ =

ρNSρEW
ρFB

 =


a0

0√
1
2
(a−1

1 − a1
1)√

1
2
i(a1

1 + a−1
1 )

 (4.23)
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Figure 4.12: Representation of the analitic template functions eqs. (4.14)
to (4.17), used in the fit procedures. Starting from the upright corner, and
proceeding clockwise: N-S Template, E-W Template, F-B Template and the
Isotropic Template.
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(a) Analitic isotropic template (b) Isotropic realistic template

(c) Analitic N-S template (d) N-S realistic template

(e) Analitic E-W template (f) E-W realistic template

Figure 4.13: Comparison between analitic and realistic templates.
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(a) Analitic F-B template (b) F-B realistic template

Figure 4.14: Comparison between analitic and realistic templates.

Figures 4.13 and 4.14 show the comparison between the analytic templates for
the isotropic and dipole components and the sky reconstructed by DAMPE
as it would be exposed to a flux with a distribution that corresponds to such
components.

In the next section the procedures to evaluate the dipole anisotropy level δ
using the reference maps will be described.

4.6 Fit procedures

Before analyzing the fit procedures, we are going to briefly describe the var-
ious maps involved in the procedure:

• flat maps : not representative of the physical problem that we are
going to explore, they have been used as a benchmark for the analysis
procedure. The analysis of these maps, that do not take into account
the exposure of the detector, highly reduce the complexity of the cal-
culations, permitting to evaluate a priori both the fit parameters and
their errors.

• realistic absolute maps: these are realistic maps, obtained consid-
ering the real exposition of the detector and the various orbits of the
satellite. For this reason they are used to extract meaningful anisotropy
parameters;
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• realistic relative maps: like the previous ones, these are realistic
maps, but with the characteristics of being able to immediately high-
light their anisotropy content. These maps are defined as the relative
difference between the realistic and the isotropic reference maps, nor-
malized to the latter one.

Φ =
φ− 〈φ〉
〈φ〉

(4.24)

Equations 4.24 describes the technique to build a relative data map Φ,
being φ the row data map and 〈φ〉 the reference one.

This procedure removes the isotropic content from the maps, showing,
on the contrary, the anisotropy dipoles. These maps, even if have the
same information content of the second ones, allow to quickly get an
idea of the features of sky represented in the map.

Figure 4.15: (left) Simulated relative data map, 10% N-S anisotropy injected.
(right) Simulated absolute data map, 10% N-S anisotropy injected.

Figure 4.15 shows the difference between the two realistic maps; on the right
the absolute map is shown, while on the left the relative one. While the infor-
mation content is the same for both the maps, the relative map immediately
highlights the dipole anisotropy injected, in this case a 10% N-S.

In figures 4.13 and 4.14 both the analytic and the realistic templates are
shown; the first ones are used to fit flat and relative maps, while the latter
in case of absolute realistic maps.
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Figure 4.16: Representation of the different fit procedures, explained in this
section.

The sketch in figure 4.16 shows the different simulated data maps analyzed
with the template-fit technique. See section 5.1 to understand how the sim-
ulated maps have been realized.

The fitting procedure minimized the sum of the difference, obtained bin by
bin, between the expected (nexp) and observed events (nobs), normalized for
the obtained ones:

χ2 =
∑
i

(ni,obs − ni,exp)2

σ2
i,obs

(4.25)

The template-fit procedure considers 4 parameters for the absolute maps,
and 3 for the relative ones6; labeled as parj, they resemble the coefficients of
the template functions before shown (eqs. (4.14) to (4.17)).

6In this case, in fact, the isotropic component is zero by construction.
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Writing equation 4.25 we assume the variance on the bin entries σ2
obs to

be poissonian distributed, while the expected number of events is obtained
considering the template, as follows:

nexp,i =
4∑
j=1

parj · Tj · dw,i (4.26)

Equation 4.26 highlights the function dependence of the number of expected
events from the bin number i, the fit parameter pari and the bin width7 dw,i.
The sum is extended to all the fit parameters, in the same number of the
template functions used.

The maps fitted with this procedure have been obtained by a MC simulation,
as described in section 5.1; different combination of injected anisotropies have
been tested8, including a completely isotropic sky, used to evaluate DAMPE ’s
sensitivity at different energy and statistics.

In case of absolute maps, bins with a number of events less that five are
excluded from the fix, while for the relative ones only the empty bins were
not considered. Differently from the usual, in fact, in this case not only
bins with a negative number of observed events are present, but the small
percentages of injected anisotropies often determine a poor statistics in many
areas of the map.

In order to account these problems, affecting also absolute maps at high
energy, different bin width have been used in function of the explored energy.
This is particularly important in the simulation of the detector acceptance
in function of the time/energy.

Experiments with a bigger geometrical acceptance, such as HERD [25],
will be able to detect a larger statistics in the same energy bins.

In case of absolute fit, the norm of the vector in equation 4.23, scaled by the
monopole expansion coefficient ρIso (which is the isotropic average), provide
the value of delta, as described by equation 4.27.

7Suppoosed to be the same for all the bins, in this work.
8Different anisotropy levels have been explored, as better explained in section 5.1,

covering the whole spectrum of expected values (see section2.3 and [20] for more details):
10%, 0.1% and 1‰of the isotropy template.
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δ =
Imin − Imax
Imin + Imax

=
|~ρ|
ρIso

=

√
ρ2
NS + ρ2

EW + ρ2
FB

ρIso
(4.27)

At the contrary, in case of relative fit, the dipole amplitude may be written
as δ =

√
ρ2
NS + ρ2

EW + ρ2
FB.

Once the fit parameters, have been obtained, the anisotropy content of the
map δ can be finally obtained; this is the physical quantity that we are
interested in. This measurement of δ in maps with an a-priori known level
of anisotropy if fundamental to verify the correctness and robustness of the
method. The same approach can be and will be applied to maps constructed
using data collected by DAMPE to measure anisotropy content of the sky
maps.

The performance of the fit procedure will be shown in the next chapter.
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Chapter 5

Simulation tests and detector
sensitivity

This chapter includes the description of the simulation tests aimed to verify
the analysis technique proposed in the previous chapter, together with the
calculation of the detector sensitivity as function of the energy and exposition
time. In order to obtain the desidered results, a set of realistic simulations
have been developed, considering the detector exposure using the Second
Based Information files (SBI), together with anisotropy injection techniques
to realize simulated anisotropy skies.

5.1 Anisotropy injection techniques

In this section we are going to explain the strategy used to simulate anisotropic
maps, injecting any dipole combination, of whatever intensity, in the data
maps.

Considering the expected anisotropy values for the signal of electrons and
positrons produced by nearby pulsars [14, 20], the intensity of the injected
dipoles ranges from 10% to 1‰, covering all the wide spectrum of possibili-
ties.
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The anisotropic maps are constructed as a weighted linear combination of
the isotropic and the 3 dipole components.

TA = WIsoTIso +WNSTNS +WEWTEW +WFBTFB (5.1)

Equation 5.1 describes the general data template, used to build the data
map (expressed in galactic coordinates). W refers to the weight of the single
dipoles, while T identify the analytic templates. As an example, to build a
10% N-S/E-W data map, the corresponding linear combination is TNS/EW =
0.8 TISO + 0.1 TNS + 0.1 TEW .

As may be noticed, the sum of all the weights is unitary:∑
i

Wi = 1 (5.2)

Once the map has been so obtained, a MonteCarlo technique method is used
to extract random values from the template to fill the simulated data map.
The number events in the whole map follows follows a Poisson distribution,
with the average value fixed at the required statistic, determined, as example,
by the statistics of data collected in flight.

Maps have been constructed by random number generation from 2D his-
tograms and 2D analytical functions. The results are in agreement.

Figures 5.1 and 5.2 are an example of the described technique; the maps are
the combination of 70% of isotropic template and a 10% of all the anisotropic
dipoles, as reported by the following equation:

TA = 0.7TIso + 0.1TNS + 0.1TEW + 0.1TFB (5.3)
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(a) Absolute mixed realistic data map (b) Relative mixed realistic data map

Figure 5.1: (left) DAMPE’s simulated (mixed) realistic absolute data map (70%
Iso + 10% N-S + 10% E-W + 10% F-B). (right) DAMPE’s simulated (mixed)
realistic relative data map (70% Iso + 10% N-S + 10% E-W + 10% F-B)

Figure 5.2: Mixed simulated flat data map (70% Iso + 10% N-S + 10% E-W
+ 10% F-B)

While, as described in section 4.6, the fit process on both the maps in figure
5.1 lead to the same results (as shown in section 5.2), it appears clear that
dealing with relative maps immediately highlights the dipole anisotropy that
might be present.

More data maps can be found in appendix G.

Maps with different levels of injected anisotropies and different total statistics
have been generated using the method described above, and have been used
to verify the robustness of the template fit procedure as described in the next
section.

94



5.2 Tests of the fit procedure

In this section we are going to test the template-fit procedure on the simulated
maps built with the technique shown in the previous sections.

The flat maps will be used as benchmark for the analysis procedure; later
in this section the performance of the analysis on the realistic maps will be
presented.

To evaluate the correctness of the results, the fit procedure has been repeated
on many statistically independent simulated sky maps. The distributions of
the fitted parameters will be shown in the following pages.

We have investigated in particular the features of the following parameters:

• distribution of the fit parameters and of the relative uncertainties;

• distribution of the anisotropy value δ, obtained as described in section
4.6. As explained in the same section, this value is a priori known for
the simulated maps; anisotropic maps are used to test the robustness of
the procedure: any deviation of the result from the expected, known,
values is an indication of a systematic effect in the algorithms.

This section is divided in three subsections: flat maps, absolute realistic maps
and relative ones. Independently from the fitted map, relative or absolute,
the anisotropy parameters obtained by the fit procedure are always compat-
ible; this means that the physical information contained is the same. The
usage of the two types of maps not only validate the results, being used as
crosscheck, but proves the absence of systematic uncertainties in the proce-
dure.
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5.2.1 Flat map performances

Consider a simulated isotropic map, shown in figure 5.3; it represents an
isotropic sky, not considering the exposure of the detector.

Figure 5.3: Isotropic simulated flat map

To build the map, a number of events N = 104 has been chosen as represen-
tative for the events acquired by DAMPE at low energy regime.

Considering the total events of the map, following a Poisson distribution
with mean N , and the ntot = 648 number of bins, the expected events in each
bin nexp is 154. For isotropic maps the error of the isotropic fit parameter
can be easily estimated a priori: considering that the poissonian error in each
bin σb is given by the square root of nexp and that all the bins enter the fit
procedure, and the value of the isotropic analitic template, the absolute error
σ can be obtained as:

σ =
σb√
nbin

κ (5.4)

In equation 5.4, κ is the isotropic fit parameter obtained from the fit; it
considers both the isotropic analitic template and the bin content of the
data map.
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The fit procedure has been repeated 3 · 104 times, each time generating a
statistical independent data map. The distribution of the isotropic parameter
and its uncertainty are represented in figure 5.4. Taking the mean value for
the parameter, and applying equation 5.4, the expected value for σ = 1.7
can be calculated.

The distribution of the parameter uncertainty is compatible with the ex-
pected value.
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Figure 5.4: (left) Distribution of the isotropic fit parameter. (right) Distribution
of the uncertainty on the isotropic fit parameter. In both graphs the thick red line
represents a gaussian fit.

Once obtained the parameters distributions, in case ob absolute maps equa-
tion 4.27 is used to evaluate the anisotropy value. The isotropic data map
in figure 5.3 does not contain any anisotropy dipole: for this reason we ex-
pect, for the corresponding anisotropy fit parameters, to be null within their
uncertainties.

The plot in figure 5.5 confirms the expectations; here the distributions
of the N-S, E-W and F-B parameter are represented. As expected, the dis-
tributions all have an average value compatible with 0 and their width is in
accord with that of the isotropic parameter (figure 5.4).

The color code introduced in this graph will be maintained until the end of
the chapter, if not differently specified.
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Figure 5.5: Distribution of the N-S (red), E-W (green) and F-B (blue) fit
parameters. Gaussian fits have been superimposed to each distribution.

In figures 5.6 5.7 and 5.8 the result of the fit procedures on anisotropic flat
maps are presented; in all the cases just one type of dipole anisotropy is
injected, with different dipole intensities.

In figure 5.6 the right column represent the distribution of the parameter
to which the anisotropy refers, while on the left a comparison with the other
components is shown. In the left column, even if the distribution of the
parameter associated with the injected anisotropy appears shifted on the
right respect to the others, the uncertainties do not permit to distinguish
between them. The resolution power of this technique is thus not sufficiently
high in the case of 1‰ injected anisotropies.

On the contrary this is not true for the 10% and 1% case; figures 5.7 and
5.8 show that the distribution of the fit parameter associated with the injected
anisotropy is well separated from the others. This is a first confirmation that
the statistics of 104 is enough the investigate dipole anisotropies at the level
of 1‰ , but is not sufficient to accurately identify anisotropies at the level
of permille
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(a) Dipole distribution comparison
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(b) N-S 1‰ distribution

(c) Dipole distribution comparison
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(d) E-W 1‰ distribution

(e) Dipole distribution comparison
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(f) F-B 1‰ distribution

Figure 5.6: Comparison between dipole fit parameters and isotropic parameter,
in case of different anisotropy dipoles of 1‰ intensity.
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(a) Dipole distribution comparison
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(b) N-S 10% distribution

Figure 5.7: (left) Distribution of the E-W and F-B dipole fits parameters for a
10% N-S map. (right) N-S fit parameter for a 10% N-S map.

(a) Dipole distribution comparison
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(b) N-S 1% distribution

Figure 5.8: (left) Distribution of the E-W and F-B dipole fits parameters for a
1% N-S map. (right) N-S fit parameter for a 1% N-S map.
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As shown by the graphs in the previous page, but more evident in the case of
1% injected anisotropy, the value to which the coefficients tend is the same,
no matter the nature of the dipole. This concept is well visible in the graph in
figure 5.9; in this case, in fact, three different data maps have been realized,
injecting a 1% of N-S dipole anisotropy (red curve), E-W dipole (green curve)
and F-B dipole (blue curve). In all the cases, the fit parameter is always the
same, no matter what the nature of the dipole is; this proves that the fit
procedure is stable also varying the dipole type, maintaining fixed, at the
contrary, its intensity.

Figure 5.9: Distribution of the N-S (red), E-W (green) and F-B (blue) fit
parameters in case of 1% injected map. Gaussian fits have been superimposed
to each distribution.

The graph in figure 5.10 represents, at the contrary, the dipole fit param-
eters for a simulated flat sky map characterized by a 1% of all the dipole
anisotropies. The compatibility of the distributions in figures 5.9 and 5.10 is
another confirmation of the correctness of the results obtained.
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The graph in figure 5.11 represents the distribution of χ2/ndf on simulated
data maps, anisotropic and not; the anisotropic ones contain just a one type
of dipole. The distributions, hardly distinguishable, all have the same width
and mean value.

Figure 5.10: (left) Distribution of the fit parameters. (right) Aitoff projection
of the 1% mixed flat data map.

0.8 0.9 1 1.1 1.2
^2/ndfχ

0

50

100

150

200

250

300

350

400

450

Iso

NS

EW

FB

Figure 5.11: Distribution of χ2/ndf for simulated data maps, differentiated
as follows: isotropic (purple), 1% N-S (red), 1% E-W (green) and 1% F-B
(blue).
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The study of the correlations between the fit parameters is another important
question; while they refer to orthogonal harmonic functions we expect a
negligible correlation factor between them.
It is interesting to note that the width of the dipole parameter distributions is
always compatible with that of the isotropic parameter and the mean values
from the fits are compatible with the injected level of anisotropy (a feature
that will be present also in the case of realistic maps).

One of the fundamental plots is, without any doubt, the δ distribution; it
contains the physical information of the anisotropy content extracted from a
certain data map.
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Figure 5.12: (left) Distribution of the δ parameter for an isotropic sky map.
(right) Distribution of the δ parameter for a 1% N-S dipole anisotropy injected.

For the absolute flat maps, the delta distribution is obtained using the equa-
tion 4.27. The δ distribution for the isotropic maps, plot on the left in figure
5.12, can be used to evaluate the sensitivity of the instrument to dipole
anisotropies; for this scope, however, the realistic maps need to be used. On
the right the delta distribution for a simulated map with a 1% of N-S injected
anisotropy is shown; the mean value is compatible with the expected one:
0.01. These checks have been performed for different statistics (ranging from
106 events to 103) and injected anistopy values (ranging from 10% to 1%).
For all tests, the average value of the uncertainty on the isotropic parameter
is compatible with the expectations: this provides further confidence in the
robustness of the fit method.
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5.2.2 Realistic absolute maps

In figure 5.13 and 5.14 the fit parameters for 10%, 1% and 1‰ N-S simulated
map are shown.
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(b) N-S 10% distribution

(c) Dipole distribution comparison
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(d) Isotropic fit parameter distribution

Figure 5.13: (left column) (top) Distribution of the E-W and F-B dipole fits
parameters for a 10% N-S map. (bottom) Distribution of the dipole fit param-
eters (right column) (top) N-S fit parameter for a 10% N-S map. (bottom)
Distribution of the isotropic fit parameter.

Figure 5.13 shows that in case of 10% and 1‰ of injected dipole intensi-
ties, the anisotropy components are well recognised and can be easily distin-
guished.
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(a) Dipole distribution comparison
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(b) F-B 1‰ distribution

Figure 5.14: (left column) Distribution of the dipole fits parameters. (right
column) Distribution of the anisotropic fit parameter.

Comparing figure 5.14 with 5.13 the resolution power of the fitting procedure
is evident; injecting a 1‰ dipole anisotropy this is not distinguishable from
the others.

Figure 5.15: (left) Distribution of the anisotropic parameters for 10% injected
maps. (right) Distribution of the anisotropic parameters for 1% injected maps.

105



0.06− 0.04− 0.02− 0 0.02 0.04 0.06 0.08
dipole fit parameters

0

50

100

150

200

250

300

350

400

NS

EW

FB

Figure 5.16: Distribution of the anisotropic parameters for 1‰ injected
maps.

Figure 5.17 shows the result of the fit procedure on statistical independent
1% realistic mixed maps, characterized by: 1% N-S (red distribution), 1%
E-W (green distribution) and 1% F-B (blue distribution). The Aitoff projec-
tion of the map is drawn on the right, while on the left the different dipole
contributes are shown. Independently on their nature, the mean value if for
all the same, as expected.
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Figure 5.17: Distribution of the fit parameters. (right) Aitoff projection of the
mixed flat data map: 1% N-S (red distribution), 1% E-W (green distribution) and
1% F-B (blue distribution).
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Figure 5.18: Distribution of χ2/ndf for simulated data maps, differentiated
as follows: isotropic (purple), 1% N-S (red), 1% E-W (green) and 1% F-B
(blue).
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Figure 5.19: (left) Distribution of the δ parameter for an isotropic sky map.
(right) Distribution of the δ parameter for a 1% N-S dipole anisotropy injected.

The plots in figure 5.18 represented the distribution of reduced χ2; all the
maps, isotropic and not, are correctly fitted though the data analysis algo-
rithm.

Figure 5.19 reports the distributions for the δ parameter; in the left in
case of isotropic maps and on the right of anisotropic ones, with 1% of N-S
dipole injected. The distribution in the case of isotropic maps will be used,
in the next section, to obtain the sensitivity of the detector; that on the right
correctly confirms the injected anisotropy value of 1%.
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5.2.3 Realistic relative maps

Many of the concepts we explained in the previous section are still valid also
for this kind of maps: the correct value of the fit parameters and the good
χ2/ndf values.

The relative maps, however, has the advantage that the fit parameters are
directly connected with the injected anisotropy values. In figures 5.20 and
5.21 the comparison between the delta distribution for absolute realistic maps
respect to the dipole fitted parameter for relative realistic maps is reported.
The injected percentage of anisotropy is 1%, in order to better visualize the
obtained results.
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(a) Distribution of δ (N-S anisotropy)
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(b) Distribution of N-S fit parameter

Figure 5.20: (bottom) Distribution of δ for absolute realistic maps. (right
column) Distribution of the dipole fit parameters for relative realistic maps.
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(a) Distribution of δ (E-W anisotropy)
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(b) Distribution of E-W fit parameter
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(c) Distribution of δ (F-B anisotropy)
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(d) Distribution of F-B fit parameter

Figure 5.21: (left column) Distribution of δ for absolute realistic maps. (right
column) Distribution of the dipole fit parameters for relative realistic maps.

These plots show that the overall compatibility between the distributions of
mean values of the fit parameters and the δ parameters, suggesting that the
two family of maps mostly provide the same information. However, tiny dif-
ferences arise in the mean values and the lateral width of the distributions.
Such differences may be the hint of a minor systematic that should be in-
vestigated in order to correctly assess the uncertainty in the final results. In
this work, however, this has been neglected and the two methods have been
considered as fully compatible

In the next section the δ distribution of the isotropic absolute realistic maps
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will be used to obtain DAMPE’s sensitivity to anisotropy measurements in
function of both the energy and the exposition time.

5.3 Sensitivity of DAMPE as function of en-

ergy and time

In this section the sensitivity of the detector for anisotropy measurements
will be evaluated, as function of the energy and the exposition time.

The sensitivity is calculated using the isotropic realistic simulated maps and
applying the equation 4.27. The procedure has been applied on 104 sta-
tistically independent maps, for each value of energy and exposition time
investigated. The sensitivity of the anisotropy measurements is then extrap-
olated from the distribution of the values of δ obtained for the 104 tries.

Table 5.1: Statistics of the simulated anisotropic maps

Energy bin (GeV) Number of events

41.7 to 55.0 204505
55 to 72.4 115460

72.4 to 95.5 65847
95.5 to 125.9 37963
125.9 to 166.0 21416
166.0 to 218.8 12263
218.8 to 288.4 6928
288.4 to 380.2 3784
380.2 to 758.6 3705
758.6 to 1995.3 828

The table 5.1 shows the realistic statistics, for each energy bin, used to build
the isotropic maps; the values taken from [7] represents the e+ + e− data
collected by DAMPE in the first 1.5 years of data acquisition.

The sensitivity is thus evaluated from the posterior distribution assuming
a 68% and 95% confidence level.
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Figure 5.22 shows the resulting upper limits at 95% CL up to 1995.3 GeV for
the e++e− measurements. Together with the upper limits obtained by Fermi-
LAT [19] and the expected values of the models for the SNR Vela [19, 20]
and the pulsar Geminga [19, 20]. The plot shows that at low energy the
sensitivity is of the order of 6 · 10−3, just considering 1.5 years; at high
energy and considering 6 years of data, DAMPE results competitive with
respect to other orbit experiments.
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Figure 5.22: red: prediction of the upper limits at 95% CL up to 1995.3
GeV for the e+ + e− measurement of the DAMPE experiment evaluated in
this work. black: prediction of the upper limits at 95% CL for the e+ + e−

measurements of the Fermi-LAT experiment [19]. cyan: Vela SNR. green:
Monogem pulsar. For DAMPE, different statistics have been considered: 1.5,
6 and 10 years.
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In figure 5.22 the upper limits of Fermi-LAT have been obtained as the mean
value of the different analysis methods results [19]. The error bars on the Y
axis show the CL range for each energy bin.

An increase in the collected statistics (or, equivalently, the acquisition
time) may result in an improvement of the dipole sensitivity, as shown in
figure 5.22. This is also highlighted in figure 5.23, where the upper limits
for 68% and 95% CL are shown as function of the mission duration and the
improvement in the sensitivity scales as 1/

√
N , where N is the number of

the collected events.
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Figure 5.23: Simulation of the sensitivity to dipole anisotropy at 68% and
95% CL, in function of acquisition time (or, equivalently, in the triggered
events) in the energy bin ranging from 95.5 to 125.9 GeV. Dashed lines
represent the functions, scaling as 1/

√
N , that fits the upper limits.
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Figures 5.24 and 5.25 show the predictions of the upper limits at 95% CL up
to 10 years of mission duration, for the e+ + e− measurement of the DAMPE
experiment and compared with the expected dipole anisotropy from Vela
SNR and Monogem PWN, as already done in figure 5.23.
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Figure 5.24: red: prediction of the upper limits at 95% CL up to 10 years of
mission duration, for the e+ +e− measurement of the DAMPE experiment in
the energy bin from 41.7 to 55.0 GeV. green: Vela SNR. purple: Monogem
pulsar
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Figure 5.25: (top): prediction of the upper limits at 95% CL up to 10 years
of mission duration, for the e+ +e− measurement of the DAMPE experiment
in the energy bin from 72.4 to 95.5 GeV (red). (bottom): prediction of the
upper limits at 95% CL up to 10 years of mission duration, for the e+ + e−

measurement of the DAMPE experiment in the energy bin from 125.9 to
166.0 GeV (red). green: Vela SNR. purple: Monogem pulsar.
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Depending on the energy range, the reference SNR model can be tested
with longer mission duration, while the sensitivity of the measurement with
DAMPE will not be enough to test the reference pulsar model. Of course,
the limits will be useful to constrain the parameter space for many different
similar models.

The HERD calorimetric cosmic ray detector mission, with a planned ac-
ceptance of 3 m2 sr and planned to be operated from 2025 onboard the future
Chinese Space Station, will improve the search sensitivities testing a param-
eter space completely out of range of the detectors currently operating in
orbit. Thanks to its acceptance, HERD will permit to obtain highly com-
petitive dipole anisotropy sensitivity already after a fraction of its planned
mission time.
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Chapter 6

Conclusions

Finally, the procedure has been applied to isotropic realistic maps, where no
additional dipole level has been injected. The level of anisotropy extracted
from the analysis of a large sample of isotropic realistic maps, that differ each
other only by statistical fluctuation, provide information on the sensitivity of
the search. The distribution of the fitted dipole anisotropy for a large sample
of maps has been analyzed and a bayesian confidence limit has been set as
function of the number of events in the sky maps.

The sensitivity of DAMPE to the dipole search has been quantified by
the 95% CL upper limit on the dipole anisotropy measurement. It has been
shown in this work that the upper limit depends on the collected statis-
tics N as 1/

√
N : this confirms that the level of sensitivity is dominated

by statistical effects, as long as systematic uncertainties can be neglected in
the procedure. The developed machinery has permitted to test the injected
anisotropy dipoles, evaluating the sensibility of the detector. The dipole am-
plitude 95% CL upper limit for DAMPE after 1.5 years of data amounts to
approximately 0.6% at 50 GeV, and increases up to approximately 20% at
200 GeV, considering the same statistics. Above this energy, the number of
events in each bin is lower than 10k, and further studies have been needed
to correctly assess the robustness of the procedure. With 6 years of data,
the sensitivity of DAMPE is compatible with that of previous measurements
from other missions for energies above 150 GeV; considering 4 years of statis-
tics DAMPE can already set constraints to test models of nearby pulsars in
this energy range. The DAMPE mission is expected to operate and collect
data in space for at least 5 years since the start of the mission, and to corre-
spondingly improve its dipole sensibilities by almost a factor of 2. However,
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since most of current space detector are being operated for longer time than
planned, due to the robustness of the detector technologies, and since the
DAMPE detector has been operating without any major defiance since more
than 2.5 years, the confidence that the mission duration could be extended
is high. Consequently, the sensitivity to dipole anisotropies in the (e+ + e−)
channel using all the data collected by the end of the mission could further
improve than what reported earlier. In the scenario where no anisotropy will
be detected, a breakthrough advance in the field will require a detector with
an acceptance at least 10 times larger than that of DAMPE.

The HERD calorimetric cosmic ray detector mission, with a planned ac-
ceptance of 3 m2 sr and planned to be operated from 2025 onboard the future
Chinese Space Station, will improve the search sensitivities testing a param-
eter space completely out of range of the detectors currently operating in
orbit.

In conclusion, a procedure for measurement of dipole anisotropies has
been developed in this work. The procedure has been tested and verified on
Monte Carlo simulations of sky maps created taking into account the accep-
tance, the livetime and the time-dependent pointing direction of the detector.
The sensitivity for search of dipole anisotropies in the (e+ + e−) channel by
DAMPE has been evaluated and compared with other detectors and expec-
tation from known astrophysical sources. The procedure can be (and will be)
finally applied on the sky data map created using (e+ + e−) events collected
by DAMPE to measure the level of anisotropy in that channel, or to provide
an energy-dependent upper limit if no anisotropy will be detected.

Both scenarios will provide novel and important information in the indi-
rect searches for Dark Matter activity in the galaxy: the results will be used
to set constraints on the astrophysical models that are invoked to explain
the rise of the positrion fraction, towards the identification of the dominat-
ing nature (astrophysical sources or Dark Matter annihilation or decay) of
the primary source of positrions and electrons needed to explain the excess
of positrons observed in cosmic rays.
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Appendix A

Fermi Acceleration Mechanism

In this section we are going to widely describe some characteristics of the
Fermi acceleration mechanisms, obtaining the power spectrum of the accel-
erated particles.

A.0.1 Fermi Acceleration Mechanism I

Figure A.1: Interaction between cosmic rays and a magnetic filed inhomo-
geneities moving at velocity V = βc

Non-collisional scattering process could be described as an ultra-relativistic
particle with energy E1 and momentum p1 collides with a magnetic filed
inhomogeneities (moving with non relativistic velocity V = βc) with an inci-
dence angle θ1. Figure A.1 represents the entire process and also shows the
final parameters of the scattering.
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As fundamental assumption we consider all collisions, internal to the inho-
mogeneity, as elastic; in this case after the particles enters it keeps unchanged
its energy.

What we propose to calculate is particle’s mean energy increment. Thanks
to Lorentz transformations is possible to switch from the lab reference frame
to that integral with the moving magnetic inhomogeneity (whose variables
are signed by an upper index), obtaining:

E
′

1 ' γ(1− β cos θ1) (A.1)

Using Lorentz transformations again, remembering that thanks to elastic not-
collisional scatterings with the magnetic field E

′
1 = E

′
2, escaping particles’

final energy could be obtained as follows:

E2 = γE
′

2(1 + β cos θ
′

2) = γ2E1(1− β cos θ1)(1 + β cos θ
′

2)

E2

E1

= γ2(1− β cos θ1)(1 + β cos θ
′

2)
(A.2)

The scattering probability between a particle (with relativistic initial velocity

~vi) and the magnetic inhomogeneity (with velocity ~V ) is proportional to the
relative velocity:

P ∝ |~V − ~vi| ∝ (β2 + β2
i − 2ββ1 cos θ1)1/2

' (1− 2β cos θ1)1/2 ' 1− β cos θ1

(A.3)

To evaluate particle’s mean energy gain we need to compute averages on
both incoming and out-coming angles θ1 and θ

′
2, as shown by equation A.2;

thanks to the high number of scattering processes internal to the magnetic
inhomogeneity, together with the random final particles’ directions θ

′
2 for

each one of these, desired mean values are easily obtained:

〈cos θ
′

2〉 = 0

〈cos θ1〉 '
∫ 1

−1
(1− β cos θ1)cosθ1d(cos θ1)∫ 1

−1
(1− β cos θ1)d(cos θ1)

= −β
3

(A.4)
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The mean energy gain is so finally obtained as a second order expression on
β, as the following equation explains:〈

E2

E1

〉
∼ γ2(1− β〈cos θ1〉)

' 1

1− β2

(
1 +

β2

3

)
' (1 + β2)

(
1 +

β2

3

)
' 1 +

4

3
β2 +O(β4)

〈
∆E

E

〉
' 4

3
β2

(A.5)

Equation A.5 is of great importance and shows the limitation of the Fermi
mechanism I, the β2 dependence. This value, that’s referred to the magnetic
inhomogeneity motion, is of the order of just few percents, making this pro-
cess particularly inefficient, except in the case of high particles’ initial energy.
Energy losses didn’t take part of the whole discussion, further diminishing
the efficiency of the mechanism. The original theory by Fermi considers the
galactic disk particles’ acceleration region; substituting CR typical escape
times and β value we obtain a spectral index like 30, particularly distant
from the experimental value. This is enough to make this model incorrect.

A.0.2 Fermi Acceleration Mechanism II

This a completely different process respect the previous one; in this case the
acceleration mechanism is not anymore based on a magnetic field inhomogen-
ity but a plane shock wave, moving through the interstellar medium.

Hydrodynamic, or more in general magnetohydrodynamic, differently
from other physical disciplines admits discontinuos solution for all the physi-
cal quantities describing a fluid status, like density, temperature and pressure.
The process by which these quantities rapidly change their values is known
as shock ; here we usually have a plasma rapidly expanding at supersonic but
not relativistic velocity through the interstellar medium, whose wavefront’s
kinetc energy is transformed to thermal energy of the particles next to the
discontinuity (shock sources will be deeply analyzed in the next section).
Thanks to this energy transformation process particles, confined in a narrow

122



Figure A.2: Examples of shock waves by SN explosion

region next to discontinuity, increase their temperature, pressure and density
as provided by Rankine-Hugoniot relations (RH); that’s at the basis of the
Fermi acceleration mechanism of the second type.

Is possible to describe the cosmic fluid as downstream, if just crossed by
the shock moving at velocity U , or upstream in the other case. Particles
are subject to diffusive processes by the local magnetic field when switching
from one to another of these reference systems, transforming their velocity
distributions to isotropic; each time this happens they gain a certain amount
of energy. Considering the high number of times the shock is crossed, together
with the high number of particles, the final energy of the system could be
huge.

Considering an observer integral to the reference frame of the shock wave-
front, he sees the shock approaching at velocity U , while backward the par-
ticles are leaving it at speed v2, easily obtained using RH conditions:

ρ1v1 = ρ2v2 (A.6)

Equation A.6, in case of supersonic hard shocks, could be written as follows:

ρ1

ρ2

=
cp/cv + 1

cp/cv − 1
(A.7)

The specific heat at pressure and volume constant, cp and cv, inserted into
equation A.7, could be easily calculated in case of monatomic and completely
ionized gas, leading to v2 = 1/4v1 = 1/4U . This means that, switching now
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to the reference frame integral with the upstream fluid, the downstream one
is approaching the observer at speed V = 3/4U , as shown in the following
figure.

Figure A.3: (a) shock wavefront propagating at supersonic speed U, pres-
sure, temperature and density of both upstream and downstream fluids are
highlighted; (b) fluxes respect to the shock reference frame; (c) fluxes respect
to the upstream fluid reference frame; (d) fluxes respect to the downstream
fluid reference frame.

Considering thus the upstream fluid reference system, a particle crossing the
shock toward the downstream one obtain an energy that we could write as:

E
′
= γ(E + pxV ) (A.8)

Writing equation A.8 γ resembles Lorentz’s factor for the shock, whose uni-
tary values is given its non-relativistic speed (contrary to what happens for
particles), px = p cos θ represents the momentum component normal to the
discontinuity and, finally, V is downstream particles’ speed.
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Using what just said few lines above, we could obtain the energy variation:

∆E = E
′ − E ∼ pV cos θ =

E

c
V cos θ

∆E

E
∼ V

c
cos θ =

3

4

U

c
cos θ =

3

4
β cos θ

(A.9)

To obtain the mean energy gained by a particle we have to compute the
angle average, with a procedure completely analogous to what previously
done; this way just the final result will be provided:〈

∆E

E

〉
∼ β (A.10)

Respect to the first type acceleration mechanism, process efficiency increased!

To calculate the differential spectrum index, and comparing it to the ob-
served one, we should before obtain particles’ escape probability from the
acceleration site. Using gas kinetic theory, the number of particles crossing
the shock on both directions is (1/4)Nc, being N is their density. After
crossing, they have a such probability to escape from the acceleration site
via multiple collisions; the number of removed ones is so straightforward ob-
tained as NV = (1/4)NU . The fraction of removed particles, by time unit,
(and so the escape probability) is thus expressible as:

P =
(1/4)NU

(1/4)Nc
=
U

c
(A.11)

Being the shock speed supersonic, but not relativistic, equation A.11 shows
how the number of removed particles could be easily ignored. Applying both
the escape probability (A.11) and the mean energy gain (A.10) into equation
1.13 we’re able to obtain a specrum index like 2.

dn(E) ∝ E−2dE (A.12)

The whole process here described is particularly important and be used to
efficiently describe CR spectrum up to to knee energies; not having infinite
duration, infact, this process has an upper limit for the maximum reachable
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energy. Observing particles with higher energies, however, does not under-
mine the model but simply highlights its limits and suggest the presence of
possibly new kind of sources.
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Appendix B

Estimate of Cold Dark Matter
coupling with barionic matter

The standard cosmological model considers the cold dark matter (CDM)1

a fundamental element for the formation of large structures, transforming
the primordial universe in what we all today explore; it could be described
as a non-relativistic and non-barionic weakly interactive matter (as better
described in section 1.5).

Large scale structures, such as galaxies clusters or our solar system, are
the result of the evolution of primordial density fluctuations; the cold dark
matter, slowly moving inside isolated domains of the universe,permitted the
creation of isolated more dense spots of matter2, with typical density con-
trasts of δρ/ρ = O(10−5). These small density contrasts will definitively
grow during matter epoch, and when these one is decoupled from the radia-
tion field.

δρ
ρ
∝ 1/z (B.1)

Equation B.1 describes the evolution of the density primordial fluctuations,

1Other models of dark matter were also considered, such as Hot Dark Matter (HDM)
and Worm Dark Matter (WDM); thanks to new theoretical models and increasingly per-
forming numerical simulations they were slowly abandoned in favor of the CDM one. Has
been shown that cold dark matter could be able to produce large structures compatibles
with the observed universe.

2In an hot dark matter scenario, all the density contrasts would be swept away because
of HDM’s rapid motion.
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as function of the redshift z. All this process takes the name of Bottom-Up
structure formation.

Figure B.1: Artistic representation of the Cold Dark Matter domains, as
thickening points for barionic matter. This picture highlights CDM’s gravi-
tational effects on the radiation field.

As for all the particles, even for dark matter is possible to write the dynamic
equation of its freez-out3:

x

Y EQ
χ

dYχ
dx

=
Γ

H

[(
Yχ

Y EQ
χ

)2

− 1

]
(B.2)

Equation B.2, where x = mχ/T and Y = nχ/s, describes the evolution of
WIMPs’ density. For a given hypothesis on the WIMP mass mχ and its
interaction rate Γ is possible to proceed with the numerical integration of
equation B.2 to found the freez-out temperature Tf , and so the value of xf
that fixes Y abundance at that moment.

3The freeout term is used to describe the situation where particle’s interaction rate Γ
is much lower respect to the Hubble parameter H, Γ� H.
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Figure B.2: (top) Graph representing different freez-out WIMPs abundances
in function of their cross section. Bigger is the interaction rate and and later
decoupling takes place. (bottom) CDM freezout, as function of energy and
the relativistic degrees of freedom g.
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For a cold dark matter particle, given its mass, more intense are its interac-
tions and earlier the decoupling takes place.4

Qualitatively is possible to estimate the order of magnitude of the coupling
constant between a cold dark matter candidate and a barionic particle.

Considering the current value of dark matter energy density Ωχ, scaled for
the critical density ρχ:

Ωχ =
Mχ,0nχ,0

ρc

ρc(t) =
3H2

8πG
=⇒ ρc(t = today) =

3H2
0

8πG
(B.3)

The current value of the critical density is ρc = 1.88 · 10−29h2gcm−3 or,
expressed in a more convenient way, ρc = 10537.5eV/c2h2gcm−3.

The dark matter freezout time, tf , could be related to the actual time t0
using the entropy conservation equation (B.4).(nχ

s

)
0

=
(nχ
s

)
f

(B.4)

The entropy, at a certain redshift z, could be directly connected with the
temperature value and the relativistic degrees of freedom g at that moment
available, as equation B.5 expresses.

s ∼ gT 3 (B.5)

Inserting equation B.5 into B.4 is possible to obtain the actual density of
CDM particles:

n0
χ = nχ

s0

s
= nχ

g0

gf

(
T0

Tf

)3

(B.6)

The Hubble parameter H could be written as function of the temperature
and Plank’s mass mpl, as follows:

H = 1.66
√
geff

T 2

mpl

(B.7)

4For an HDM particle the freez-out density is the equilibrium one, Yχ(inf) = Y EQχ (xf ).
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Writing equation B.7 geff represents the effective relativistic degree of free-
dom, that available given a certain energy E = kT . Using the freez-out
condition Γ = nχ〈σv〉 ∼ H we are able to obtain WIMPs’ density at freez-
out:

nχ ∼
H

σv
=

1.66
√
geff (kT )2

~c2mpl〈σv〉
(B.8)

Substituting equation B.8 into B.3, we obtain:

Ωχh
2 =

mχ

ρχ

1.66
√
geff (kTF )2g0

~c2mpl〈σv〉gf

(
T0

Tf

)3

(B.9)

We now have to choose a reasonable value for the freez-out temperature Tf ,
or, in other words, a temperature at witch WIMPs could not be produced:

Tf =
mχ

20
(B.10)

Equation B.10 provides the requested value for the temperature; considering
the measured value for the energy density of the dark matter Ωχh

2 = 0.12,
we could use equation B.9 to obtain an estimate of CDM’s interaction rate:

〈σv〉WIMPs ≈ O(10−26cm2s−1) (B.11)

Is could be interesting the comparison between the obtained result of equation
B.11 and the usual value for weak interaction:

〈σv〉weak ∝
α2

(100GeV )2
∼ 10−25cm3s−1 (B.12)

The obtained results confirm what we said in the previous chapters (1,2)
about WIMPs.
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Appendix C

GZK cutoff

This physical process provides an estimate on the maximum traveled distance
for protons, showing this is several orders of magnitude bigger respect to the
electron and positron case.

It’s based on anelastic scattering between high energy protons and CMB
photons; cosmic microwave background radiation originated together with
the universe itself during the Big Bang, thirteen billions of years ago. Still
measurable, this radiation has a temperature equal to 2.7K and a charac-
teristic density of 400 photons/cm3; thermal information could be obtained
by a precise measurement of radiation’s spectrum, which has the typical
black-body shape.

CMB detailed study, and its small temperature fluctuation principally, that
we will not face in this thesis work, has permitted to obtain many important
information regarding the standard cosmological model.
Scattering processes regarding protons and CMB can be written as follows:

p+ γ = ∆∗(1236)→ n+ π+

p+ γ = ∆∗(1236)→ p+ π0 (C.1)

The two processes (whose cross section is about 250µb) shown in equation
C.1 have a characteristic photo-production energy threshold of 300 MeV in
the center of mass reference frame; this important value can be related to
the photons’ energy in the lab frame through a Lorentz transformation:

EFP
0 = γ(ECMBR

γ +
vp
c
ECMBR
γ ) = γECMBR

0 (1 +
vp
c

) ≈ 2γECMBR
γ (C.2)
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Writing equation C.2 protons have been supposed to be relativistic, which
is completely true considering we’re dealing with extremely high energy par-
ticles; energy value for CMB photons can be trivially obtained considering
their frequency:

ECMBR
γ = hν = 4.1 · 10−15eV s · 160.2 · 109Hz = 6 · 10−4eV (C.3)

Knowing the photoproduction thereshold and the energy of the CMB pho-
tons, is possible to obtain protons’ Lorentz parameter in the lab reference
frame:

γ ≈ EFP
0

2ECMBR
γ

≈ 3 · 1011 (C.4)

Finally, once all the prerequisites quantities have been calculated, we can
estimate protons’ threshold energy for the scattering process EGZK

0 and their
mean free path λ:

EGZK
0 = γ(mpc

2) ≈ 3 · 1020 eV

λ = (σpγnσ)−1 = 1025 cm = 3 Mpc
(C.5)

If the energy of the proton is bigger than EGZK
0 the photoproduction process

could start; assuming that in each interaction the proton looses 1/10 of its
energy, and remembering the mean free path above calculated, is possible to
estimate protons’ maximum approaching distance at 30 Mpc.
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Appendix D

BGO shower containment

In this section we are going to obtain the longitudinal containment of the
BGO electromagnetic calorimeter.

Reading the BGO’s characteristics from the PDG, its radiation length X0 is
X0 = 7.97 gcm−2; knowing the density of the material ρ = 7.13 gcm3 the
associated length L may be easy calculated, as L = X0ρ = 1.10 cm.

To properly calculate the longitudinal shower containment, an effective value
Zeff for the atomic number Z of the BGO material should be calculated:

Zeff =
1

19
(83 · 4 + 32 · 3 + 8 · 12) = 27.6 (D.1)

After the shower maximum, the particle production stops and both electrons
and positrons having an energy below Ec (known as critic energy) will stop
in a layer of ∼ 1X0, due to the ionization loss.

Once the Zeff value has been calculated, the critic energy value could be
easily obtained:

Ec =
580 MeV

Zeff
∼ 21 MeV (D.2)

To describe the the electromagnetic shower development is often used a vari-
able t = X/X0, the position on the calorimeter divided by the radiation
length.
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Is possible to obtain the maximum value of t for the shower, resembling the
point where the number of particle N(t) is maximum:

tmax = ln

(
E

Ec

)
+ Cγe ∼ ln

(
10 TeV

21 MeV

)
− 0.5 = 12.6 (D.3)

Equation D.3 permits to obtain the value of the t parameter at the maximum
of the shower development; Cγe is a parameter used to differentiate photon
induced showers (Cγe = 0.5) and electron induced ones (Cγe = −0.5). In our
case the great majority of the showers start by an electron, the result of the
photo-conversion of a γ ray1.

Is thus possible to compute the value of t for a 95% shower longitudinal
containment, as follows:

t95% = tmax + 0.08Zeff + 9.6 = 24.4 (D.4)

Using the t95% calculated in equation D.4 is finally possible to obtain the re-
quested thickness for the BGO calorimeter to contain the 95% of the shower:

h[cm] ∼ 24X0

ρ
= 27 cm (D.5)

Remembering the real thickness of DAMPE’s BGO eCAL, of 35 cm, is im-
mediately possible to notice that the longitudinal containment of the shower
is well above the 95% value.

In the same way, is possible to easily calculate the Molière radius, for the
transversal containment:

RM [cm] =
21 MeV

Ec
L[cm] ∼ L[cm] = 1.10 cm (D.6)

Comparing the results of equation D.5 and D.6 is immediately evident that,
considering the same percentage of containment, the transversal one requires
a significantly lower amount of space.

1Considering that the efficiency of the process is not unitary, some photon-induced are
still present.
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Appendix E

ToyMC simulation of
DAMPE’s geometrical
acceptance

Figure E.1: 2D representation of the differential cross section, as function of
cos(θ) and φ.

Figure E.1 represents the two-dimensional differential acceptance, as function
of cos(θ) and φ, angles in the local reference frame describing the incoming
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direction of a particle. This figure highlight periodic a series of periodic struc-
tures, due to the rectangular section of DAMPE ’s BGO eCAL (as explained
in section 4.2).

The cosmic rays have been generated according to a uniform distribution in
cos2(θ) (for the polar angle θ) and φ (the azimuth coordinate) 1, as reported
in the Sullivan article.
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Figure E.2: (top) Uniform distribution of the azimuth coordinate φ. (bot-
tom) Uniform distribution of cos2(θ), for the polar coordinate.

1θ and φ describe the incoming direction of the cosmic rays, in a reference frame fixed
with the detector.

139



As a verify of the generation process, consider the distribution of the following
distribution of the generated events:

dNgen

dcos2(θ)
= k (E.1)

The k parameter may be obtained fitting the distribution with a pol0 func-
tion, as reported in figure E.2 (bottom): k = 1e+ 07± 1e+ 02.

Is possible to obtain the distribution of the generated events in function
of the cos(θ) variable, as follows:

dNgen

dcos(θ)
=

dNgen

dcos2(θ)

dcos2(θ)

dcos(θ)
= 2kcos(θ) (E.2)
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Figure E.3: Event distribution in function of cos(θ).

Considering the k value before obtained, the fit values of the distribution in
figure E.3 result compatible with the expected ones.
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Appendix F

Reference isotropic maps

In this section are presented the reference isotropic maps for various k values
(as written in graphs’ titles).

F.1 k-fixed maps
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F.2 rate-based map
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Appendix G

Data Maps

In this section will be presented some of the maps obtained through the
injection technique, described in section 5.1. Different values of anisotropies
has been tested: 10%, 1% and 1‰(respect to the isotropic template).

In the following pages are reported some of the most relevant maps, grouped
for injected anisotropy percentage and fit model, including or not the detector
acceptance.

For each of the fitting technique represented in the sketch in section 5.1 the
following maps are produced:

i Isotropic map (except for the relative case);

ii Anisotropic N-S map;

iii Anisotropic E-W map;

iv Anisotropic F-B map;

v Anisotropic N-S + E-W ;

vi Anisotropic N-S + F-B ;

vii Anisotropic E-W + F-B ;

viii Anisotropic N-S + E-W + F-B.
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Figure G.1: All-Sky simulated data maps, 10% anisotropy injected
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Figure G.2: All-Sky simulated data maps, 10% anisotropy injected
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Figure G.3: All-Sky simulated data maps, 1% anisotropy injected
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Figure G.4: All-Sky simulated data maps, 1% anisotropy injected
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Figure G.5: All-Sky simulated data maps, 1‰ anisotropy injected
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Figure G.6: All-Sky simulated data maps, 1‰ anisotropy injected
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Figure G.7: DAMPE’s simulated data maps, 10% anisotropy injected
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Figure G.8: DAMPE’s simulated data maps, 10% anisotropy injected
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Figure G.9: DAMPE’s simulated data maps, 1% anisotropy injected

155



Figure G.10: DAMPE’s simulated data maps, 1% anisotropy injected
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Figure G.11: DAMPE’s simulated data maps, 1‰ anisotropy injected
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Figure G.12: DAMPE’s simulated data maps, 1‰ anisotropy injected
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Figure G.13: DAMPE’s simulated relative data maps, 10% anisotropy injected
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Figure G.14: DAMPE’s simulated relative data maps, 10% anisotropy injected
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Figure G.15: DAMPE’s simulated relative data maps, 1% anisotropy injected
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Figure G.16: DAMPE’s simulated relative data maps, 1% anisotropy injected
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Figure G.17: DAMPE’s simulated relative data maps, 1‰ anisotropy injected
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Figure G.18: DAMPE’s simulated relative data maps, 1‰ anisotropy injected

164



Bibliography

[1] D. Schuckardt, Limits on the dipole anisotropy in the flux of cosmic ray
leptons with AMS-02. PhD thesis, Institute for Experimental Nuclear
Physics (IEKP), 2014.

[2] M. Settimo, “Studio dei meccanismi di accelerazione dei raggi cosmici
di alta energia,” Master’s thesis, Università degli Studi di Lecce, 2004.

[3] M. S. Longair, High Energy Astrophysics, vol. 2. Cambridge University
Press, 2 ed., 1994.

[4] M. Ackermann, M. Ajello, W. B. Atwood, L. Baldini, J. Ballet, G. Bar-
biellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, and et al.,
“Searches for cosmic-ray electron anisotropies with the fermi large area
telescope,” Physical Review D, vol. 82, Nov 2010.

[5] M. Aguilar et al., “First Result from the Alpha Magnetic Spectrome-
ter on the International Space Station: Precision Measurement of the
Positron Fraction in Primary Cosmic Rays of 0.5350 GeV,” Phys. Rev.
Lett., vol. 110, p. 141102, 2013.

[6] S. Caroff, “High Statistics Measurement of the Positron Fraction in Pri-
mary Cosmic Rays with the Alpha Magnetic Spectrometer on the In-
ternational Space Station,” in 25th European Cosmic Ray Symposium
(ECRS 2016) Turin, Italy, September 04-09, 2016, 2016.

[7] D. Collaboration, G. Ambrosi, Q. An, R. Asfandiyarov, P. Azzarello,
P. Bernardini, B. Bertucci, M. S. Cai, J. Chang, D. Y. Chen, H. F. Chen,
J. L. Chen, W. Chen, M. Y. Cui, T. S. Cui, A. D’Amone, A. De Benedit-
tis, I. De Mitri, M. Di Santo, J. N. Dong, T. K. Dong, Y. F. Dong,
Z. X. Dong, G. Donvito, D. Droz, K. K. Duan, J. L. Duan, M. Du-
ranti, D. D’Urso, R. R. Fan, Y. Z. Fan, F. Fang, C. Q. Feng, L. Feng,

165



P. Fusco, V. Gallo, F. J. Gan, M. Gao, S. S. Gao, F. Gargano, S. Gar-
rappa, K. Gong, Y. Z. Gong, D. Y. Guo, J. H. Guo, Y. M. Hu, G. S.
Huang, Y. Y. Huang, M. Ionica, D. Jiang, W. Jiang, X. Jin, J. Kong,
S. J. Lei, S. Li, X. Li, W. L. Li, Y. Li, Y. F. Liang, Y. M. Liang, N. H.
Liao, H. Liu, J. Liu, S. B. Liu, W. Q. Liu, Y. Liu, F. Loparco, M. Ma,
P. X. Ma, S. Y. Ma, T. Ma, X. Q. Ma, X. Y. Ma, G. Marsella, M. N.
Mazziotta, D. Mo, X. Y. Niu, X. Y. Peng, W. X. Peng, R. Qiao, J. N.
Rao, M. M. Salinas, G. Z. Shang, W. H. Shen, Z. Q. Shen, Z. T. Shen,
J. X. Song, H. Su, M. Su, Z. Y. Sun, A. Surdo, X. J. Teng, X. B. Tian,
A. Tykhonov, V. Vagelli, S. Vitillo, C. Wang, H. Wang, H. Y. Wang,
J. Z. Wang, L. G. Wang, Q. Wang, S. Wang, X. H. Wang, X. L. Wang,
Y. F. Wang, Y. P. Wang, Y. Z. Wang, S. C. Wen, Z. M. Wang, D. M.
Wei, J. J. Wei, Y. F. Wei, D. Wu, J. Wu, L. B. Wu, S. S. Wu, X. Wu,
K. Xi, Z. Q. Xia, Y. L. Xin, H. T. Xu, Z. L. Xu, Z. Z. Xu, G. F. Xue,
H. B. Yang, P. Yang, Y. Q. Yang, Z. L. Yang, H. J. Yao, Y. H. Yu,
Q. Yuan, C. Yue, J. J. Zang, C. Zhang, D. L. Zhang, F. Zhang, J. B.
Zhang, J. Y. Zhang, J. Z. Zhang, L. Zhang, P. F. Zhang, S. X. Zhang,
W. Z. Zhang, Y. Zhang, Y. J. Zhang, Y. Q. Zhang, Y. L. Zhang, Y. P.
Zhang, Z. Zhang, Z. Y. Zhang, H. Zhao, H. Y. Zhao, X. F. Zhao, C. Y.
Zhou, Y. Zhou, X. Zhu, Y. Zhu, and S. Zimmer, “Direct detection of
a break in the teraelectronvolt cosmic-ray spectrum of electrons and
positrons,” Nature, vol. 552, pp. 63 EP –, 11 2017.

[8] Y. hua Yao, C. Jin, and X. chuan Chang, “Test of the 1.4 tev dampe
electron excess with preliminary h.e.s.s. measurement,” Nuclear Physics
B, vol. 934, pp. 396 – 407, 2018.

[9] A. Archer et al., “Measurement of Cosmic-ray Electrons at TeV Energies
by VERITAS,” 2018.

[10] K. Fang, X.-J. Bi, and P.-F. Yin, “Explanation of the knee-like feature in
the dampe cosmic e−+e+ energy spectrum,” The Astrophysical Journal,
vol. 854, p. 57, Feb 2018.

[11] J. Lavalle, “Galactic electrons and positrons at the earth: New estimate
of the primary and secondary fluxes,” in Cosmic Rays for Particle and
Astroparticle Physics - Proceedings of the 12th ICATPP Conference,
pp. 525–534, 06 2011.

166



[12] F. Donato, “Antimatter and lepton in space: multi-disciplinary, multi-
wavelength directions,” in AMS Days, 2018.

[13] M. Di Mauro, S. Manconi, A. Vittino, F. Donato, N. Fornengo, L. Bal-
dini, R. Bonino, N. Di Lalla, L. Latronico, S. Maldera, and et al., “The-
oretical interpretation of pass 8 fermi-lat e + + e - data,” The Astro-
physical Journal, vol. 845, p. 107, Aug 2017.

[14] D. Hooper, P. Blasi, and P. D. Serpico, “Pulsars as the sources of high
energy cosmic ray positrons,” Journal of Cosmology and Astroparticle
Physics, vol. 2009, pp. 025–025, Jan 2009.

[15] M. Cirelli, “Status of Indirect (and Direct) Dark Matter searches,” 2015.

[16] D. Campana, U. Giaccari, O. Adriani, G. C. Barbarino, G. A.
Bazilevskaya, R. Bellotti, A. Bianco, M. Boezio, E. A. Bogomolov,
L. Bonechi, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno,
F. Cafagna, R. Carbone, P. Carlson, M. Casolino, G. Castellini, M. P. D.
Pascale, C. D. Santis, N. D. Simone, V. D. Felice, V. Formato, A. M.
Galper, L. Grishantseva, G. Jerse, A. V. Karelin, M. D. Kheymits, S. V.
Koldashov, S. Y. Krutkov, A. N. Kvashnin, A. Leonov, V. Malakhov,
V. Malvezzi, L. Marcelli, M. Martucci, A. G. Mayorov, W. Menn, V. V.
Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, R. Munini, N. Nikonov,
G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto,
M. Ricci, S. B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Spar-
voli, P. Spillantini, Y. I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev,
S. A. Voronov, J. Wu, Y. T. Yurkin, G. Zampa, N. Zampa, and V. G.
Zverev, “Search for cosmic ray electron-positron anisotropies with the
pamela data,” Journal of Physics: Conference Series, vol. 409, no. 1,
p. 012055, 2013.

[17] I. Gebauer, “Methods for cosmic ray anisotropy searches with AMS-02,”
PoS, vol. ICRC2015, p. 408, 2016.

[18] G. La Vacca, “Search for Cosmic Ray Anisotropy with the Alpha Mag-
netic Spectrometer on the International Space Station,” in 25th Eu-
ropean Cosmic Ray Symposium (ECRS 2016) Turin, Italy, September
04-09, 2016, 2016.

167



[19] S. Abdollahi, M. Ackermann, M. Ajello, A. Albert, W. B. Atwood,
L. Baldini, G. Barbiellini, R. Bellazzini, E. Bissaldi, E. D. Bloom, and
et al., “Search for cosmic-ray electron and positron anisotropies with
seven years of fermi large area telescope data,” Physical Review Letters,
vol. 118, Mar 2017.

[20] S. Manconi, M. D. Mauro, and F. Donato, “Dipole anisotropy in cos-
mic electrons and positrons: inspection on local sources,” Journal of
Cosmology and Astroparticle Physics, vol. 2017, pp. 006–006, Jan 2017.

[21] J. Chang, G. Ambrosi, Q. An, R. Asfandiyarov, P. Azzarello, P. Bernar-
dini, B. Bertucci, M. Cai, M. Caragiulo, D. Chen, and et al., “The
dark matter particle explorer mission,” Astroparticle Physics, vol. 95,
pp. 6–24, Oct 2017.

[22] J. Sullivan, “Geometric factor and directional response of single and
multi-element particle telescopes,” Nuclear Instruments and Methods,
vol. 95, no. 1, pp. 5 – 11, 1971.

[23] A. Cuoco, T. Linden, M. Mazziotta, J. Siegal-Gaskins, V. Vitale, and
E. Komatsu, “Anisotropies in the diffuse gamma-ray background mea-
sured by the fermi-lat,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associ-
ated Equipment, vol. 692, pp. 127–131, Nov 2012.

[24] K. M. Gorski, B. D. Wandelt, F. K. Hansen, E. Hivon, and A. J. Banday,
“The healpix primer,” 1999.

[25] S. N. Zhang, O. Adriani, S. Albergo, G. Ambrosi, Q. An, T. W. Bao,
R. Battiston, X. J. Bi, Z. Cao, J. Y. Chai, and et al., “The high energy
cosmic-radiation detection (herd) facility onboard china’s space station,”
Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray,
Jul 2014.

168



169



Acknowledgements

First of all my thanks to my tutors, Dr. Valerio Vagelli and Dr. Matteo
Duranti, that made this work possible. Their passion and devotion on this

project, together with their ability, patience and precious advice allowed to
make this work something special.

A special thanks to Dr. Giovanni Ambrosi, for his continuous support
during the various stages of this project.

Last, but not least, a great thank you to my special friends Gabriele di Bari
and Mirco Tracolli, Ph.D. students in computer science at the University of
Florence and Perugia, for their precious and essential help in the realization

and improvement of the data analysis software.


	Introduction
	Physical background
	General information on cosmic rays
	Energy Density of Cosmic Rays
	Fermi acceleration mechanisms
	CR sources
	Super Novae
	Pulsar

	Dark Matter
	Positron fraction
	Spectrum characteristics


	Anisotropy of the incoming directions of charged cosmic rays
	Confinement of cosmic rays
	Electrons and positrons traveled distance

	Isotropy and Anisotropy in cosmic rays
	Possible sources of the positron excess

	The DAMPE Detector
	The Plastic Scintillation array Detector (PSD)
	The Silicon-Tungsten tracKer-converter (STK)
	The BGO calorimeter (BGO)

	The NeUtron Detector (NUD)
	Performing anisotropy measurements with DAMPE

	Tools for the anisotropy study
	Galactic and Geographic coordinate systems
	The acceptance of the DAMPE experiment
	Calculation of DAMPE exposure
	Realization of reference maps
	Multipole Analysis
	Fit procedures

	Simulation tests and detector sensitivity
	Anisotropy injection techniques
	Tests of the fit procedure
	Flat map performances
	Realistic absolute maps
	Realistic relative maps

	Sensitivity of DAMPE as function of energy and time

	Conclusions
	Appendices
	Fermi Acceleration Mechanism
	Fermi Acceleration Mechanism I
	Fermi Acceleration Mechanism II


	Estimate of Cold Dark Matter coupling with barionic matter
	GZK cutoff
	BGO shower containment
	ToyMC simulation of DAMPE's geometrical acceptance
	Reference isotropic maps
	k-fixed maps
	rate-based map

	Data Maps

