Esercizio $\mathrm{n}^{\circ} 2$

- Si realizzino i seguenti montaggi basati sull'amplificatore operazione 741 e se ne descriva il funzionamento:
- amplificatore
- amplificatore invertente
- integratore o derivatore
- Si caratterizzino in modo quantitativo gli ampificatori al variare della frequenza del segnale in ingresso
- Si verifichi la banda passante di uno dei due amplificatori al variare del guadagno

Inverting amplifier example

- Applying the rules: - terminal at "virtual ground"
- so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$
- Current does not flow into op-amp (one of our rules)
- so the current through R_{1} must go through R_{2}
- voltage drop across R_{2} is then $I_{\mathrm{f}} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- So $V_{\text {out }}=0-V_{\text {in }} \times\left(R_{2} / R_{1}\right)=-V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- Thus we amplify $V_{\text {in }}$ by factor $-R_{2} / R_{1}$
- negative sign earns title "inverting" amplifier
- Current is drawn into op-amp output terminal

Non-inverting Amplifier

- Now neg. terminal held at $V_{\text {in }}$
- so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$ (to left, into ground)
- This current cannot come from op-amp input
- so comes through R_{2} (delivered from op-amp output)
- voltage drop across R_{2} is $I_{\mathrm{f}} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- so that output is higher than neg. input terminal by $V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
$-V_{\text {out }}=V_{\text {in }}+V_{\text {in }} \times\left(R_{2} / R_{1}\right)=V_{\text {in }} \times\left(1+R_{2} / R_{1}\right)$
- thus gain is $\left(1+R_{2} / R_{1}\right)$, and is positive
- Current is sourced from op-amp output in this example

Noninverting amplifier

$$
v_{o}=\left(1+\frac{R_{f}}{R_{a}}\right) v_{i}
$$

Voltage follower

$$
v_{o}=v_{i}
$$

Noninverting input with voltage divider

$$
v_{o}=\left(1+\frac{R_{f}}{R_{a}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{i}
$$

Less than unity ${ }_{\text {gain }}^{R_{f}}$

$$
v_{o}=\frac{R_{2}}{R_{1}+R_{2}} v_{i}
$$

Summing Amplifier

- Much like the inverting amplifier, but with two input voltages
- inverting input still held at virtual ground
$-I_{1}$ and I_{2} are added together to run through R_{f}
- so we get the (inverted) sum: $V_{\text {out }}=-R_{\mathrm{f}} \times\left(V_{1} / R_{1}+V_{2} / R_{2}\right)$
- if $R_{2}=R_{1}$, we get a sum proportional to $\left(V_{1}+V_{2}\right)$
- Can have any number of summing inputs
- we' ll make our D/A converter this way

Differencing Amplifier

- The non-inverting input is a simple voltage divider:
$-V_{\text {node }}=V^{+} R_{2} /\left(R_{1}+R_{2}\right)$
- So $I_{\mathrm{f}}=\left(V^{-}-V_{\text {node }}\right) / R_{1}$
$-V_{\text {out }}=V_{\text {node }}-I_{f} R_{2}=V^{+}\left(1+R_{2} / R_{1}\right)\left(R_{2} /\left(R_{1}+R_{2}\right)\right)-V-\left(R_{2} / R_{1}\right)$
- so $V_{\text {out }}=\left(R_{2} / R_{1}\right)\left(V^{+}-V^{-}\right)$

Differentiator (high-pass)

$$
\begin{aligned}
& \text { c } \\
& v_{i n}-1 \varliminf_{\equiv} R \quad v_{\text {out }} \\
& Q=C V \\
& I=\frac{d Q}{d t}=C \frac{d V}{d t} \\
& I=C \frac{d}{d t}\left(V_{\text {in }}-V_{\text {out }}\right)=\frac{V_{\text {out }}}{R} \\
& \frac{d V_{\text {out }}}{d t} \ll \frac{d V_{\text {in }}}{d t} \quad C \frac{d V_{\text {in }}}{d t}=\frac{V_{\text {out }}}{R} \\
& V_{o u t}=R C \frac{d V_{\text {in }}}{d t}
\end{aligned}
$$

Differentiator (high-pass)

- For a capacitor

$$
Q=C V
$$

$$
\begin{gathered}
I=\frac{d Q}{d t}=C \frac{d V}{d t} \\
V_{o u t}=-I_{c a p} R=-R C \frac{d V}{d t}
\end{gathered}
$$

- So we have a differentiator, or high-pass filter

Low-pass filter (integrator)

- $\mathrm{I}_{\mathrm{f}}=\mathrm{V}_{\text {in }} / \mathrm{R}$, so $\mathrm{C} \cdot d \mathrm{~V}_{\text {cap }} / \mathrm{dt}=\mathrm{V}_{\text {in }} / \mathrm{R}$

$$
\begin{gathered}
Q=C V \\
I=\frac{d Q}{d t}=C \frac{d V}{d t}
\end{gathered}
$$

- and since left side of capacitor is at virtual ground:

$$
\begin{gathered}
-\frac{d V_{\text {out }}}{d t}=\frac{V_{\text {in }}}{R C} \\
V_{\text {out }}=-\frac{1}{R C} \int^{2} V_{\text {in }} d t
\end{gathered}
$$

- and therefore we have an integrator (low pass)

