Tom Murphy, UCSD
http://physics.ucsd.edu/~tmurphy/phys121/phys121.html

Operational Amplifiers

Magic Rules
Application Examples

Op-Amp Introduction

- Op-amps (amplifiers/buffers in general) are drawn as a triangle in a circuit schematic
- There are two inputs
- inverting and non-inverting
- And one output
- Also power connections (note no explicit ground)

The ideal op-amp

- Infinite voltage gain
- a voltage difference at the two inputs is magnified infinitely
- in truth, something like 200,000
- means difference between + terminal and - terminal is amplified by 200,000!
- Infinite input impedance
- no current flows into inputs
- in truth, about $10^{12} \Omega$ for FET input op-amps
- Zero output impedance
- rock-solid independent of load
- roughly true up to current maximum (usually 5-25 mA)
- Infinitely fast (infinite bandwidth)
- in truth, limited to few MHz range
- slew rate limited to $0.5-20 \mathrm{~V} / \mathrm{\mu s}$

op amp: modello

Op-amp without feedback

- The internal op-amp formula is:

$$
V_{\text {out }}=\text { gain } \times\left(V_{+}-V_{-}\right)
$$

- So if V_{+}is greater than $V_{\text {_ }}$, the output goes positive
- If V_{-}is greater than V_{+}, the output goes negative

- A gain of 200,000 makes this device (as illustrated here) practically useless

Infinite Gain in negative feedback

- Infinite gain would be useless except in the selfregulated negative feedback regime
- negative feedback seems bad, and positive good-but in electronics positive feedback means runaway or oscillation, and negative feedback leads to stability
- Imagine hooking the output to the inverting terminal:
- If the output is less than $V_{\text {in }}$, it shoots positive
- If the output is greater than $V_{\text {in }}$, it shoots negative
- result is that output quickly forces itself to be exactly $V_{\text {in }}$

negative feedback loop

Even under load

- Even if we load the output (which as pictured wants to drag the output to ground)...
- the op-amp will do everything it can within its current limitations to drive the output until the inverting input reaches $V_{\text {in }}$
- negative feedback makes it self-correcting
- in this case, the op-amp drives (or pulls, if $V_{\text {in }}$ is negative) a current through the load until the output equals $V_{\text {in }}$
- so what we have here is a buffer: can apply $V_{\text {in }}$ to a load without burdening the source of $V_{\text {in }}$ with any current!

Important note: op-amp output terminal sources/sinks current at will: not like inputs that have no current flow

Positive feedback pathology

- In the configuration below, if the + input is even a smidge higher than $V_{\text {in }}$, the output goes way positive
- This makes the + terminal even more positive than $V_{\text {in }}$, making the situation worse
- This system will immediately "rail" at the supply voltage
- could rail either direction, depending on initial offset

positive feedback: BAD

feedback

$$
\begin{aligned}
& A=\frac{V_{o u t}}{V_{\text {in }}} \\
& V_{\text {out }}=A_{o} V^{\prime}
\end{aligned}
$$

$$
V^{\prime}=V_{\text {in }}+\beta V_{\text {out }}
$$

$$
\left.A=\frac{A_{o}}{\left(1-\beta A_{o}\right.}\right)
$$

$$
V_{\text {out }}=A_{o}\left(V_{\text {in }}+\beta V_{\text {out }}\right)
$$

$$
V_{\text {out }}\left(1-\beta A_{o}\right)=A_{o} V_{\text {in }}
$$

$$
\left.A=\frac{A_{o}}{\left(1+\beta A_{o}\right.}\right) \sim \frac{1}{\beta}
$$

$$
\left.\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{A_{o}}{\left(1-\beta A_{o}\right.}\right)
$$

Op-Amp "Golden Rules"

- When an op-amp is configured in any negativefeedback arrangement, it will obey the following two rules:
- The inputs to the op-amp draw or source no current (true whether negative feedback or not)
- The op-amp output will do whatever it can (within its limitations) to make the voltage difference between the two inputs zero

Inverting amplifier example

Inverting amplifier example

- Applying the rules: - terminal at "virtual ground"
- so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$
- Current does not flow into op-amp (one of our rules)
- so the current through R_{1} must go through R_{2}
- voltage drop across R_{2} is then $I_{\mathrm{f}} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- So $V_{\text {out }}=0-V_{\text {in }} \times\left(R_{2} / R_{1}\right)=-V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- Thus we amplify $V_{\text {in }}$ by factor $-R_{2} / R_{1}$
- negative sign earns title "inverting" amplifier
- Current is drawn into op-amp output terminal

Non-inverting Amplifier

Non-inverting Amplifier

- Now neg. terminal held at $V_{\text {in }}$
- so current through R_{1} is $I_{\mathrm{f}}=V_{\text {in }} / R_{1}$ (to left, into ground)
- This current cannot come from op-amp input
- so comes through R_{2} (delivered from op-amp output)
- voltage drop across R_{2} is $I_{\mathrm{f}} R_{2}=V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
- so that output is higher than neg. input terminal by $V_{\text {in }} \times\left(R_{2} / R_{1}\right)$
$-V_{\text {out }}=V_{\text {in }}+V_{\text {in }} \times\left(R_{2} / R_{1}\right)=V_{\text {in }} \times\left(1+R_{2} / R_{1}\right)$
- thus gain is $\left(1+R_{2} / R_{1}\right)$, and is positive
- Current is sourced from op-amp output in this example

Noninverting amplifier

$$
v_{o}=\left(1+\frac{R_{f}}{R_{a}}\right) v_{i}
$$

Voltage follower

$$
v_{o}=v_{i}
$$

Noninverting input with voltage divider

$$
v_{o}=\left(1+\frac{R_{f}}{R_{a}}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{i}
$$

Less than unity ${ }_{\text {gain }}^{R_{f}}$

$$
v_{o}=\frac{R_{2}}{R_{1}+R_{2}} v_{i}
$$

Ideal Vs Practical Op-Amp

	Ideal	Practical	Ideal op-amp
Open Loop gain A	\propto	10^{5}	
Bandwidth $B W$	\propto	$10-100 \mathrm{~Hz}$	0
Input Impedance $Z_{\text {in }}$	\propto	$>1 \mathrm{M} \Omega$	
Output Impedance $Z_{\text {out }}$	0Ω	10-100 Ω	Practical op-amp
Output Voltage $V_{\text {out }}$	Depends only on $V_{\mathrm{d}}=\left(\mathrm{V}_{+}-\mathrm{V}_{-}\right)$ Differential mode signal	Depends slightly on average input $V_{\mathrm{c}}=\left(\mathrm{V}_{+}+\mathrm{V}_{-}\right) / 2$ Common-Mode signal	
CMRR	\propto	10-100dB	

Summing Amplifier

- Much like the inverting amplifier, but with two input voltages
- inverting input still held at virtual ground
$-I_{1}$ and I_{2} are added together to run through R_{f}
- so we get the (inverted) sum: $V_{\text {out }}=-R_{\mathrm{f}} \times\left(V_{1} / R_{1}+V_{2} / R_{2}\right)$
- if $R_{2}=R_{1}$, we get a sum proportional to $\left(V_{1}+V_{2}\right)$
- Can have any number of summing inputs
- we' ll make our D/A converter this way

Differencing Amplifier

- The non-inverting input is a simple voltage divider:

Differencing Amplifier

- The non-inverting input is a simple voltage divider:
$-V_{\text {node }}=V^{+} R_{2} /\left(R_{1}+R_{2}\right)$

Differencing Amplifier

- The non-inverting input is a simple voltage divider:
$-V_{\text {node }}=V^{+} R_{2} /\left(R_{1}+R_{2}\right)$
- So $I_{\mathrm{f}}=\left(V^{-}-V_{\text {node }}\right) / R_{1}$

Differencing Amplifier

- The non-inverting input is a simple voltage divider:
$-V_{\text {node }}=V^{+} R_{2} /\left(R_{1}+R_{2}\right)$
- So $I_{\mathrm{f}}=\left(V^{-}-V_{\text {node }}\right) / R_{1}$
$-V_{\text {out }}=V_{\text {node }}-I_{\mathrm{f}} R_{2}=V^{+}\left(1+R_{2} / R_{1}\right)\left(R_{2} /\left(R_{1}+R_{2}\right)\right)-V^{-}\left(R_{2} / R_{1}\right)$

Differencing Amplifier

- The non-inverting input is a simple voltage divider:
$-V_{\text {node }}=V^{+} R_{2} /\left(R_{1}+R_{2}\right)$
- So $I_{\mathrm{f}}=\left(V^{-}-V_{\text {node }}\right) / R_{1}$
$-V_{\text {out }}=V_{\text {node }}-I_{f} R_{2}=V^{+}\left(1+R_{2} / R_{1}\right)\left(R_{2} /\left(R_{1}+R_{2}\right)\right)-V-\left(R_{2} / R_{1}\right)$
- so $V_{\text {out }}=\left(R_{2} / R_{1}\right)\left(V^{+}-V^{-}\right)$

Differentiator (high-pass)

$$
\begin{aligned}
& \text { c } \\
& v_{\text {in }}-1 \Vdash_{=} R \quad v_{\text {out }} \\
& Q=C V \\
& I=\frac{d Q}{d t}=C \frac{d V}{d t} \\
& I=C \frac{d}{d t}\left(V_{\text {in }}-V_{o u t}\right)=\frac{V_{o u t}}{R} \\
& \frac{d V_{\text {out }}}{d t} \ll \frac{d V_{\text {in }}}{d t} \quad C \frac{d V_{\text {in }}}{d t}=\frac{V_{\text {out }}}{R} \\
& V_{o u t}=R C \frac{d V_{\text {in }}}{d t}
\end{aligned}
$$

Differentiator (high-pass)

- For a capacitor

$$
Q=C V
$$

$$
\begin{gathered}
I=\frac{d Q}{d t}=C \frac{d V}{d t} \\
V_{o u t}=-I_{c a p} R=-R C \frac{d V}{d t}
\end{gathered}
$$

- So we have a differentiator, or high-pass filter

Low-pass filter (integrator)

- $\mathrm{I}_{\mathrm{f}}=\mathrm{V}_{\text {in }} / \mathrm{R}$, so $\mathrm{C} \cdot d \mathrm{~V}_{\text {cap }} / \mathrm{dt}=\mathrm{V}_{\text {in }} / \mathrm{R}$

$$
\begin{gathered}
Q=C V \\
I=\frac{d Q}{d t}=C \frac{d V}{d t}
\end{gathered}
$$

- and since left side of capacitor is at virtual ground:

$$
\begin{gathered}
-\frac{d V_{\text {out }}}{d t}=\frac{V_{\text {in }}}{R C} \\
V_{\text {out }}=-\frac{1}{R C} \int^{2} V_{\text {in }} d t
\end{gathered}
$$

- and therefore we have an integrator (low pass)

esempio: 741

Frequency-Gain Relation

- Ideally, signals are amplified from DC to the highest AC frequency
- Practically, bandwidth is limited
- 741 family op-amp have an limit bandwidth of few KHz.
- Unity Gain frequency f_{1} : the gain at unity
- Cutoff frequency f_{c} : the gain drop by 3 dB from dc gain G_{d}

GB Product : $f_{1}=G_{\mathrm{d}} f_{\mathrm{c}}$

GB Product

Example: Determine the cutoff frequency of an op-amp having a unit gain frequency $f_{1}=10 \mathrm{MHz}$ and voltage differential gain $G_{\mathrm{d}}=20 \mathrm{~V} / \mathrm{mV}$
Sol:

$$
\begin{aligned}
& \text { Since } f_{1}=10 \mathrm{MHz} \\
& \text { By using GB production equation } \\
& \quad f_{1}=G_{\mathrm{d}} f_{\mathrm{c}} \\
& \begin{aligned}
f_{\mathrm{c}} & =f_{1} / G_{\mathrm{d}}=10 \mathrm{MHz} / 20 \mathrm{~V} / \mathrm{mV} \\
= & 10 \times 10^{6} / 20 \times 10^{3} \\
= & 500 \mathrm{~Hz}
\end{aligned}
\end{aligned}
$$

Gain-Bandwidth product: GBP $=\mathrm{A}_{\mathrm{o}} \mathrm{BW}$

