Tom Murphy, UCSD http://physics.ucsd.edu/~tmurphy/phys121/phys121.html

Operational Amplifiers

Magic Rules Application Examples

Op-Amp Introduction

- Op-amps (amplifiers/buffers in general) are drawn as a triangle in a circuit schematic
- There are two inputs
 - inverting and non-inverting
- And one output
- Also power connections (note no explicit ground)

Winter 2012

The ideal op-amp

- Infinite voltage gain
 - a voltage difference at the two inputs is magnified infinitely
 - in truth, something like 200,000
 - means difference between + terminal and terminal is amplified by 200,000!
- Infinite input impedance
 - no current flows into inputs
 - in truth, about $10^{12} \Omega$ for FET input op-amps
- Zero output impedance
 - rock-solid independent of load
 - roughly true up to current maximum (usually 5–25 mA)
- Infinitely fast (infinite bandwidth)
 - in truth, limited to few MHz range
 - slew rate limited to 0.5–20 V/ μ s

op amp: modello

Op-amp without feedback

• The internal op-amp formula is:

 $V_{out} = gain \times (V_+ - V_-)$

- So if V_+ is greater than V_- , the output goes positive
- If V_{-} is greater than V_{+} , the output goes negative

• A gain of 200,000 makes this device (as illustrated here) practically useless

Infinite Gain in negative feedback

- Infinite gain would be useless except in the selfregulated negative feedback regime
 - negative feedback seems bad, and positive good—but in electronics positive feedback means runaway or oscillation, and negative feedback leads to stability
- Imagine hooking the output to the inverting terminal:
- If the output is less than V_{in} , it shoots positive
- If the output is greater than V_{in} , it shoots negative
 - result is that output quickly forces itself to be exactly V_{in}

negative feedback loop

Winter 2012

Even under load

- Even if we load the output (which as pictured wants to drag the output to ground)...
 - the op-amp will do everything it can within its current limitations to drive the output until the inverting input reaches V_{in}
 - negative feedback makes it self-correcting
 - in this case, the op-amp drives (or pulls, if V_{in} is negative) a current through the load until the output equals V_{in}
 - so what we have here is a buffer: can apply V_{in} to a load without burdening the source of V_{in} with *any* current!

Important note: op-amp output terminal sources/sinks current at will: not like inputs that have no current flow

Positive feedback pathology

- In the configuration below, if the + input is even a smidge higher than V_{in} , the output goes way positive
- This makes the + terminal even *more* positive than V_{in}, making the situation worse
- This system will immediately "rail" at the supply voltage
 - could rail either direction, depending on initial offset

positive feedback: BAD

feedback

$$A = \frac{V_{out}}{V_{in}}$$

$$V_{out} = A_o V'$$

$$V' = V_{in} + \beta V_{out}$$
$$V_{out} = A_o(V_{in} + \beta V_{out})$$
$$V_{out}(1 - \beta A_o) = A_o V_{in}$$
$$\frac{V_{out}}{V_{in}} = \frac{A_o}{(1 - \beta A_o)}$$

_

$$A = \frac{A_o}{(1 - \beta A_o})$$

$$A = \frac{A_o}{(1 + \beta A_o)} \sim \frac{1}{\beta}$$

Op-Amp "Golden Rules"

- When an op-amp is configured in *any* negativefeedback arrangement, it will obey the following two rules:
 - The inputs to the op-amp draw or source no current (true whether negative feedback or not)
 - The op-amp output will do whatever it can (within its limitations) to make the voltage difference between the two inputs zero

Inverting amplifier example

Inverting amplifier example

- Applying the rules: terminal at "virtual ground"
 so current through R₁ is I_f = V_{in}/R₁
- Current does not flow into op-amp (one of our rules)
 - so the current through R_1 must go through R_2
 - voltage drop across R_2 is then $I_f R_2 = V_{in} \times (R_2/R_1)$
- So $V_{\text{out}} = 0 V_{\text{in}} \times (R_2/R_1) = -V_{\text{in}} \times (R_2/R_1)$
- Thus we amplify V_{in} by factor $-R_2/R_1$
 - negative sign earns title "inverting" amplifier
- Current is *drawn into* op-amp output terminal

Winter 2012

Non-inverting Amplifier

Non-inverting Amplifier

- Now neg. terminal held at V_{in}
 - so current through R_1 is $I_f = V_{in}/R_1$ (to left, into ground)
- This current cannot come from op-amp input
 - so comes through R_2 (delivered from op-amp output)
 - voltage drop across R_2 is $I_f R_2 = V_{in} \times (R_2/R_1)$
 - so that output is higher than neg. input terminal by $V_{in} \times (R_2/R_1)$
 - $V_{\text{out}} = V_{\text{in}} + V_{\text{in}} \times (R_2/R_1) = V_{\text{in}} \times (1 + R_2/R_1)$
 - thus gain is $(1 + R_2/R_1)$, and is positive
- Current is sourced from op-amp output in this example

Operational Amplifier

Ideal Vs Practical Op-Amp

	Ideal	Practical	Ideal op-amp
Open Loop gain A	x	10 ⁵	$V_{ m in}$ $V_{ m out}$
Bandwidth BW	x	10-100Hz	Z _{out} =0
Input Impedance Z_{in}	x	>1MΩ	
Output Impedance Z_{out}	0 Ω	10-100 Ω	Practical op-amp
Output Voltage V _{out}	Depends only on $V_d = (V_+ - V)$ Differential mode signal	Depends slightly on average input $V_c = (V_++V)/2$ Common-Mode signal	V_{m} Z_{m} Z_{m} Z_{m} Z_{m} Z_{m} Z_{m} Z_{m} Z_{m} V_{out}
CMRR	x	10-100dB	

Summing Amplifier

- Much like the inverting amplifier, but with two input voltages
 - inverting input still held at virtual ground
 - $-I_1$ and I_2 are added together to run through R_f
 - so we get the (inverted) sum: $V_{out} = -R_f \times (V_1/R_1 + V_2/R_2)$
 - if $R_2 = R_1$, we get a sum proportional to $(V_1 + V_2)$
- Can have any number of summing inputs
 - we'll make our D/A converter this way

• The non-inverting input is a simple voltage divider:

The non-inverting input is a simple voltage divider:
 - V_{node} = V⁺R₂/(R₁ + R₂)

• The non-inverting input is a simple voltage divider:

$$- V_{\text{node}} = V^+ R_2 / (R_1 + R_2)$$

• So $I_{\rm f} = (V^{-} - V_{\rm node})/R_1$

Differencing Amplifier R_1 $V \rightarrow V_{v}$ $V^+ \rightarrow V_{R_1}$ R_2 R_2

• The non-inverting input is a simple voltage divider:

 $- V_{\text{node}} = V^+ R_2 / (R_1 + R_2)$

• So $I_f = (V^- - V_{node})/R_1$ - $V_{out} = V_{node} - I_f R_2 = V^+ (1 + R_2/R_1)(R_2/(R_1 + R_2)) - V^-(R_2/R_1)$

• The non-inverting input is a simple voltage divider:

 $- V_{\text{node}} = V^+ R_2 / (R_1 + R_2)$

• So $I_f = (V^- - V_{node})/R_1$ - $V_{out} = V_{node} - I_f R_2 = V^+ (1 + R_2/R_1)(R_2/(R_1 + R_2)) - V^-(R_2/R_1)$

$$- \text{ so } V_{\text{out}} = (R_2/R_1)(V^+ - V^-)$$

Differentiator (high-pass)

$$I = C\frac{d}{dt}(V_{in} - V_{out}) = \frac{V_{out}}{R}$$

$$V_{out} = RC \frac{dV_{in}}{dt}$$

• For a capacitor Q = CV

$$I = \frac{dQ}{dt} = C\frac{dV}{dt}$$
$$V_{out} = -I_{cap}R = -RC\frac{dV}{dt}$$

• So we have a differentiator, or high-pass filter

Winter 2012

• $I_f = V_{in}/R$, so $C \cdot dV_{cap}/dt = V_{in}/R$

– and since left side of capacitor is at virtual ground:

$$-\frac{dV_{out}}{dt} = \frac{V_{in}}{RC}$$
$$V_{out} = -\frac{1}{RC} \int V_{in} dt$$

and therefore we have an integrator (low pass)

Winter 2012

esempio: 741

26

Frequency-Gain Relation

GB Product

Example: Determine the cutoff frequency of an op-amp having a unit gain frequency $f_1 = 10$ MHz and voltage differential gain $G_d = 20$ V/mV

Gain-Bandwidth product: GBP = A_0 BW