TAPHONOMIC FEATURES OF PALEODICTYON AND OTHER GRAPHOGLYPTID TRACE FOSSILS IN Oligo-Miocene Thin-Bedded Turbidites, Northern Apennines, Italy

PAOLO MONACO

Dipartimento di Scienze della Terra, Università degli Studi di Perugia, Piazza dell’Università 1-06100 Perugia, Italy
e-mail: pmonaco@unipg.it

ABSTRACT

Taphonomic features of 156 graphoglyptids and other trace fossils preserved as hypichnia of thin-bedded turbidites in Oligo-Miocene flysch of the northern Apennines (central Italy) were analyzed. Two biogenic taphonomic categories—deformation and elongation—were produced in hemipelagic mud by the behavior of endobenthic organisms. Deformation includes such features typical of bulldozing and burrowing as twisting, squeezing, tilting, thickening, and widening. Elongation is considered a primary biogenic character controlled directly by the trace maker. Taphonomic features induced by such physical agents as currents and creep usually developed unidirectionally and include stretching, straightening, smoothing, bending, tapering, thickening, and thinning. These features, associated with hundreds of microgrooves (5–10 per 0.01 m) tapering, thickening, and thinning. These features, associated with currents and creep usually developed unidirectionally and include stretching, straightening, smoothing, bending, tapering, thickening, and thinning. These features, associated with hundreds of microgrooves (5–10 per 0.01 m²) interpreted as mud-current lineations, suggest that currents were active and produced deformational structures of fluting before, during, and after the biogenic activity. Preservation of such delicate structures recognizable at different levels is particularly noticeable when a thin layer of fine material settled by suspension, molding all structures and producing a cemented film. Deformational structures may be particularly well preserved in thin-bedded (3–6-cm-thick) and fine-grained calcarenitic turbidites as in diluted turbulent flow deposits that fringed the isolated Verghereto High. Activities of epic and infaunal communities in this area are also exceptionally well preserved. Physical taphocharacters of graphoglyptids are interpreted in two ways: (1) as true tool marks produced in mud by a tractive water mass preceding sand deposition by turbidite flows, or (2) as structures inherited from pre-turbidite phases. Taphonomic analysis in deep-sea deposits, therefore, is a promising methodology to resolve the preservational state of trace fossils above and below the soles of turbidites.

INTRODUCTION

Taphonomic features of 156 trace fossils preserved as hypichnia of thin-bedded turbidites in Oligo-Miocene flysch deposits of the northern Apennines foredeep basins, central Italy, were analyzed (Fig. 1). Variations in the shape of the geometric patterns of burrows are taphonomic characteristics that conform to methods used by Bromley (1996), Monaco (2000), and Monaco and Gianetti (2002). Such parameters as elongation, deformation, and thickening or thinning that affect shafts, meshes, ramous meanders, and strings that define ichnotaxa provide new data to improve the preservation models of Seilacher (1977b; 2007) and Crimes and Crossley (1980). Moreover, taphonomic observations presented here provide a better characterization of the role played by currents and biogenic activity in the preservation of hypichnia at soles of turbidite deposits.

Paleodictyon Menghini, 1850, is a distinct trace fossil preserved commonly as casts on the sole of fine- to medium-grained turbidites (Peruzzi, 1881). It is a three-dimensional burrow system composed of a regular, repetitive net made up of horizontally distributed hexagonal meshes and vertical outlets to the seafloor. Paleodictyon belongs to the group of trace fossils known as graphoglyptids (Fuchs, 1895), which includes a large number of ichnotaxa (Książkiewicz, 1970, 1977; Seilacher, 1977a; 1977b; 2007). Seilacher (1977b) postulated several behavioral programs including nutritional strategies in food-restricted, deep-sea environments. Burrowing strategies are still unsolved and the nature of many of the trace-makers remains unknown (Miller, 1991; Wetzel, 2000; Uchman, 2004). Some studies refer to these trace fossils as solitary burrowers, colonial protists (xenophyophorans?), or other types of organisms (Swinbanks, 1982; Levin, 1994; Rona et al., 2003; Rona, 2004). A mathematical analysis of Paleodictyon patterns raises questions about whether it should be considered a burrow and whether it was constructed by a single organism or by multiple organisms (Honeycutt and Plotnick, 2005). Trace-makers of Paleodictyon are inferred to be farming microbes and are, therefore, included in the ethologic group of agrichnia (Ekdale, 1985). Paleodictyon was constructed in many environments during the early Paleozoic (Orr, 2001) and have been found in deep-water turbidite deposits from the Late Cretaceous to Paleogene (Fuchs, 1895; Seilacher, 1962, 1974, 1977b; Uchman, 1995a, 1998, 2004; Wetzel, 2000). Seilacher (1977b, fig. 1, p. 292) proposed that Paleodictyon and other forms of graphoglyptids were produced in mud that was eroded and cast by sand-rich turbidites; these burrows are referred to as predepositional trace fossils (Książkiewicz, 1954; Seilacher 1962). The preservation of graphoglyptids as turbidite sole casts, therefore, depends strictly on the erosion of the seafloor in front of a turbidity current and the time of casting (Seilacher, 1974; Uchman, 1995a; Tunis and Uchman, 1996a, 1996b).

Crimes and Crossley (1980) noted that Paleodictyon provides much information about bottom currents. For example, the long axes of hexagonal meshes are not always parallel to the sole marks of the turbidite; they deviate by a few degrees (Crimes and Crossley, 1980; table 1). This suggests that the preferential orientation of the long axis reflects the orientation of bottom currents in between episodes of turbidite deposition. Elongation and their parallel orientation to the main current flow may have facilitated the convergence of current flows through all the tunnels of the burrow system (Crimes and Crossley, 1980, fig. 5). The role of the seafloor consistency and the displacement of the sediment in a slope environment—downslope gravity creep—remain unresolved. Crimes and Crossley (1980) suggested that Paleodictyon could be used to infer the direction of the paleocurrent and to define changes in flow directions near distal facies.

Few studies have been made on the taphonomic features of Paleodictyon and other deep-water graphoglyptids, even though the preservation potential of taphonomic alterations induced by physical or biogenic processes may be detectable at the soles of fine-grained turbidites (Seilacher, 2007). In order to test the models introduced by Seilacher (1977b; 2007) and Crimes and Crossley (1980), the taphonomic characteristics of ichnocones preserved as hypichnia of turbidites in Oligo-Miocene flysch of the Northern Apennines were analyzed. This allowed the physical and biogenic processes to be quantified and the role of erosion and casting in deep-sea deposits to be appraised.
are hypichnia or endichnia (mainly by hypichnia and epichnia, whereas trace fossils in thicker beds are very poorly preserved because of abundant tabular scours and large grooves (up to 60 cm wide). These facies are important when trying to understand the compaction history of these units because the cross-sectional shape of the channels in such endichnia as Chondrites, Ophiomorpha, and Thalassinoides varies from circular to elliptical in shape. For example, O. radis often have oblique cross grooves, flute casts, and frontal scales at the soles of thick-beded turbidites. Thick-beded turbidites are probably depositional lobes, which make up the most common type of sandstone bodies in the basin fill of the northern Apennine foredeep and correspond to the maximum extent to which the NW–SE-oriented sand bodies were transported into the basin (Walker, 1984; Mutti and Normark, 1987; Mutti, 1992).

Medium-beded turbidites are assigned mainly to facies F7–F8, whereas thin-beded turbidites are assigned to facies F9, low-density turbidite currents (LDTC), or thin-beded deposits (Table 1). Facies F7 is characterized by thin, horizontal laminae that likely represent traction carpets. Several thin traction-carpet layers can be found from the base to the top in the same 30–50-cm-thick bed and may be only a few grains thick (Mutti, 1992, plate 42A–B). Facies F8 is considered a true Ta Bouma division and consists of structureless, medium- to fine-grained sandstone.

Thin-beded turbidites (fine-grained facies F9) typically characterize distal areas of outer fans or fan-fringe facies of lobes and basin plain; graphoglyptids are very abundant and well preserved in these facies. Facies F9 can be subdivided into facies F9a and F9b. According to Mutti (1992), facies F9a is commonly a Ta-missing turbidite bed, showing the typical incomplete Tb–e or Td–e type sequence of the Bouma sequence. Facies F9b has a higher sand/mud ratio than facies F9a, is internally less organized, composed of slightly coarser sediments than very fine grained sandstone, and is characterized by ripple bedforms. Deposits of the F9b facies probably indicate a high fall-out rate from a suspension current (e.g., Mutti, 1992, p. 74). Small-sized specimens of Paleodictyon strozzii, P. majus, P. italicum, P. minimum, Paleoichnus isp., and other graphoglyptids are very abundant at the soles of the F9a and F9b facies, where taphonomic features are also well preserved. Large-sized P. hexagonum specimens, usually found in facies F9a, may be partially scoured (Montone and Campigna localities, see Table 1).

In the Verghereto High, the muddy facies are very thick (up to 400 m) and contain sporadic thin-beded turbidites (F9b facies, 3–5 cm thick, Montecoronaro in Table 1). Turbidite bodies tend to become progressively thicker towards the north; this suggests a gradational transition from the F9a–b facies to the northwest of the Verghereto High to the F7–F8 facies of the Bagno di Romagna depositional fan. In the Verghereto High, the top of thin-beded deposits is rippled and shows such meandering or sinuous trace fossils as Nereites missouriensis and Scollia prisca. Small ripples suggest varying directions in weak bottom currents (Piper and Stow, 1991; Mutti, 1992). Other thin-beded, fine-grained turbidites show the turbidite mud sequence T0–T8–P and E1–E3–F (Stow and Piper, 1984a, 1984b; Walker, 1984). Some graphoglyptids have been found (e.g., Urolecmithinaeidae), but the top of the bed, which is the hemipelagitepelagic transition (T8-P or E-F, respectively, see Monaco and Uchman, 1999; Wetzel and Uchman, 2001), is poorly bioturbated (e.g., Chondrites).

ICHNOLOGY

Rich graphoglyptid ichnoecoenoses made up of many ichnotaxa are summarized in Table 2. Only 156 trace fossils catalogued in the ICHNOThECA of the BioSedimentary Laboratory at the Earth Science Department of the University of Perugia show interesting taphonomic features for analysis. Paleodictyon is the most useful for taphonomic analysis. Sixty-three Paleodictyon specimens studied belong to P. strozzii.
hexagonum (17 specimens), 12 were Glenodictyum, and 5 Ramodictyon, sensu Seilacher, 1977b), P. strozzii (2 specimens), P. majus (6 specimens), P. italicum (6 specimens), P. minimum (11 specimens), P. latum (5 specimens), Paleodictyon isp. (13 specimens) and Squamodictyon (3 specimens) (Table 2).

The ichnotaxonomy of Paleodictyon is based mainly on the geometry of the nets (regular or irregular), the maximum mesh size, the ratio of the maximum mesh size (MMS) to the string diameter (SD), and the preservation of vertical shafts with or without mesh (Sacco, 1888; Vialov and Golev, 1965; Seilacher, 1977b; Uchman, 1995a). Seilacher (1977b) proposed such ichnogeneric names for Paleodictyon to indicate only horizontal hexagonal meshes, (2) Ramodictyon when vertical shafts are preserved, and (3) Squamodictyon to indicate scalelike meshes. Recently, Uchman (1995a) redefined the morphometric range of Paleodictyon in flysch deposits using the maximum mesh size and string diameters, distinguishing 13 species, including very small (P. minimum and P. latum with MMS values of 0.1–0.3 mm and SD values of 0.2–0.9 mm) and very large forms (P. italicum, P. hexagonum and P. gomezi with MMS >10 mm and SD >2.5 mm). In this classification, it is often difficult to distinguish between the two forms of the Ramodictyon subichnogenus, R. tripatens and R. nodosum (Seilacher, 1977b), because each Glenodictyum specimen may also be preserved as Ramodictyon when vertical shafts are preserved. R. nodosum and R. tripatens, therefore, should be used with caution. In this study, specimens of Glenodictyum were considered apart from Ramodictyon (Table 3). The first consists of a large net, 80 cm wide and 120 cm long, with SD of 2.8–4 mm and a MMS of ~14 mm (Table 3). Vertical shafts and knobs (knob diameter = 6–8 mm and knob length = 10–12 mm; Table 3) are located at three branching points of the mesh, such as in R. tripatens (Seilacher, 1977b, fig. 14g). Mesh widening or elongation may have affected the string diameter, thereby influencing the taxonomic affinity; specimens with a very wide, widened string (Uchman, 1995a) are also known as P. robustum (Koriba and Miki, 1939).

The remaining ichnotaxa considered in this study include both graphoglyptid and nongraphoglyptid specimens and are subdivided into knob-shaped (38 specimens), ramous-shaped (39 specimens), and string-shaped or meandering trace fossils (16 specimens) (Tables 2–3). In general, knob-shaped and ramous-shaped forms are taxonomically meaningful only when they are geometrically distributed or follow closely spaced meanders at soles of fine-grained turbidites; they also cross Paleodictyon minimum meshes. Trace fossils can be indicated as generic plug-shaped structures when preservation is poor and taxonomic determination is doubtful (Table 3). The main knob-shaped or radiate ichnotaxa recognized in the studied material include: Lorenzina isp. (9 specimens), Paraentchelschnella isp. (7 specimens), Helicolithus ramosus (3 specimens), and Bergaueria isp. (4 specimens). Other ramous-shaped (uni- and biramous) graphoglyptids include Desmograpton (20 specimens), Paleomeandron (4 specimens), Urohelminthoida (10 specimens), and Proto-paleodictyon (3 specimens). The meandering and string-shaped trace fossils are Cosmorhaphe (2 specimens), Helminthorhaphes (3 specimens), Spongeliomorpha (4 specimens), and Protovirgularia (8 specimens) (see Tables 2–3). Ophiomorpha rudis and Scolicia strozzii, although very abundant, were not considered in this study.
TABLE 2.—Description of ichnogenera.

<table>
<thead>
<tr>
<th>Ichnogenus</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleodictyon Meneghini, 1850</td>
<td>Hypichnial mesh of hexagons and shafts. For extended description, see text. 63 specimens.</td>
</tr>
<tr>
<td>Lorenzinia Gabelli, 1900</td>
<td>Radial structure with short, smooth, hypichnial ridges arranged in one or two circular rows radiating from round central area; Lorenzinia pastulosa, Lorenzinia plana, and Lorenzinia isp. have been found. 9 specimens.</td>
</tr>
<tr>
<td>Parahaenichnus Chamberlain, 1971</td>
<td>Hypichnial circular to oval knobs, up to 20 mm in diameter of vertical shafts, radiating subvertically from one master shaft. 7 specimens.</td>
</tr>
<tr>
<td>Helicolithus Arpeita Moros, 1933</td>
<td>Series of regular and parallel knobs, 0.3–1 mm in diameter, up to 100 per dm² and regularly spaced in sole of fine-grained turbidites; studied specimens of Helicolithus ramosus very similar to Punctorhabdus parallelula. 3 specimens.</td>
</tr>
<tr>
<td>BERGANEIRA Prani, 1945</td>
<td>Vertical plug-shaped trace fossil, circular to elliptical in cross section with rounded base and apical depression with essentially structureless sandy fill; specimens of Bergaueria cf. hemisphérica as hypichnial mounds 15–25 mm long and 15–17 mm high, oval in outline, at lower surface of fine-grained, silty turbidites. 4 specimens.</td>
</tr>
<tr>
<td>Cosmorhaphe Fuchs, 1895</td>
<td>Meandering grapholytoid with two orders of regular and widely spaced meanders; in C. lobata second-order undulations are better preserved than first-order ones and usually of greater wave length than amplitude. In C. purva regular, second-order undulations are slightly higher than wide. 2 specimens.</td>
</tr>
<tr>
<td>Desmograptol Peran, 1985</td>
<td>Hypichnial trace fossil formed by double rows of string-sized, J- or U-shaped, semimeanders joined by bars. Curved segments inwardly oriented in alternating position; rare are two opposite semimeanders joined by short bars. In 5 specimens of Desmograptol ichthyiforme, bars narrowly aligned and appear as parallel and very long ridges; perpendicular bars seldom preserved. In 15 specimens of Desmograptol dertensium, narrow U-shaped semi-meanders occur. 1 specimen of Desmograptol cf. alternum displays alternate semi-meanders elevated in curved positions. 21 specimens.</td>
</tr>
<tr>
<td>Paleomeandron Peruzzi, 1881</td>
<td>Meandering string preserved as hypichnia with rectangular second-order meanders. P. transversum shows first-order, widely spaced meanders and sharp turning points marked by cross bars; P. robustum exhibits pins of thin knobs, 0.2–0.4 mm wide, distributed inside meanders, which probably represent vertical shafts; P. elegans with second-order undulations and sharp corners and Paleomeandron isp. have been found. 4 specimens.</td>
</tr>
<tr>
<td>Uroholminithoida Sacco, 1888</td>
<td>Hypichnial string-sized, tight meanders, in which turning points are angular, and regularly spaced appendages protrude outwardly from turning points. U. dertensium is more common and typical and commonly forms regular meanders, 30–45 mm wide, and shows hypichnial stringing up to 4 mm in diameter; appendages are up 60 mm long. U. cf. appendiculata exhibits slightly irregular meanders, which are tight (distance two or three times tunnel diameter) and very wide, with a course becoming convex; appendages short, parallel to tunnels. 10 specimens.</td>
</tr>
<tr>
<td>Helminthorhaphe Seilacher, 1977</td>
<td>Nonbranching hypichnial trace fossil of variable string diameter (up to 4 mm in H. cf. japonica) with one order of smooth meanders. In H. japonica, specimen from Cervarola Formation meanders show very high amplitude. 3 specimens.</td>
</tr>
<tr>
<td>Protopaleodictyon Ksiksikiewicz, 1958</td>
<td>Hypichnial wide first-order meanders, more or less regular in shape, with short appendages branching from apex of second-order meanders. Three specimens of Protopaleodictyon minutum and Protopaleodictyon isp. from sole of fine-grained turbidites exhibit interesting taphonomic features. 3 specimens.</td>
</tr>
<tr>
<td>Plug-shaped structures (undetermined)</td>
<td>Circular to elliptical, essentially structureless sandy filled structures, 1 to 3.5 mm in diameter, randomly distributed in groups as hypichnia at soles of thin-beaded turbidites. 15 specimens.</td>
</tr>
<tr>
<td>Spongeomorpha de Sauter, 1887</td>
<td>Simple, string-shaped horizontal burrow usually with set of longitudinal or obliquely disposed, fine and elongate striations on exterior. Usually this predepositional trace produces a displacement of mud current lineations and other trace fossils. Main ichnospecies is S. sublambbicoides with ridges and striae disposed obliquely and grouped. 4 specimens.</td>
</tr>
<tr>
<td>Protopaleodictyon McCoy, 1850</td>
<td>Horizontal, cylindrical trace fossil, distinctly or indistinctly bilobate, straight or slightly meandering. Characteristics are internal structures, formed by successive pads of sediment disposed at both sides, expressed on exterior as typical ribs arranged in chevronlike biserial pattern (P. obliterata). Protovirgularia vegans usually undulate in vertical plane (semi-lune) and therefore preserved as hypichnial disrupted ridges with close flute casts. 8 specimens.</td>
</tr>
</tbody>
</table>

TAPHONOMY

Taphonomic analysis of trace fossils (Figs. 2–3) focused on the morphologic deviations from the original shapes caused by biogenic or physical agents (Bromley, 1990, 1996; Fernández López, 1997; Monaco, 2000; Monaco and Giannetti, 2002; Caracuel et al., 2005; Savrda, 2007). In large and small ichnotaxa of Paleodictyon, superimposed meshes of the same ichnospecies are found: two for Paleodictyon hexagonum and two for P. minimum; they always have a peculiar arrangement and are arranged as superimposed rows of cells (see 2Msh in Fig. 2G). The shallow upper parts of the shafts and deep mesh levels are commonly separated by a difference in height (step in Figs. 3A–C). This step varies from 10–30 mm for large Paleodictyon specimens (P. hexagonum) to 2–3 mm for small specimens (P. minimum). It highlights two orders of erosional processes that affect the seafloor at different depths and involve one or more meshes and vertical shafts (Figs. 3A–C). In Paleodictyon minimum both mesh levels are exposed: a deep one, 2–4 mm below the paleosurface, and a shallow one closer to the sediment-water interface (dpm and shm, respectively, in Fig. 3C). In all small examples of P. minimum at Quarantola (Alpe di Poi, see Tables 1–3), the number of processes that affect meshes decreases from the deepest (dpm) to the shallowest level (shm). Two taphonomic characteristics that only affect the shallow mesh are indicated in Figure 3C.

Taphonomic characteristics can be attributed to biogenic and physical agents: the former produced three-dimensional deformations, whereas the latter produced unidirectional deformations on both the mesh plane and shafts (Fig. 4). Twelve taphonomic features that involve deep and shallow mesh, knobs, and ramos meanders are listed below; their abbreviations are summarized in Table 3. Outlines of biogenically and physically induced features are summarized in Figure 4. In many samples these features are often associated.

Taphonomic Features Induced by Biogenic Agents

Two separate groups of biogenically induced taphonomic features can be recognized: (1) three-dimensional deformations and (2) elongation. Unlike elongation, which is directly controlled by the tracemaker, three-dimensional (3-D) deformations can be considered to be a byproduct of burrowing. This kind of secondary deformation can occur in five different ways, depicted in Figure 4, and briefly described below.

Twisting.—Twisting can be considered a 3-D deformation because it develops along the x-y-z axes (Fig. 4). A portion of trace fossil (e.g., one
Table 3—Taphonomic features of 156 specimens. Taxonomy symbols: MMS = maximum mesh size; SD = string diameter; SL = string length; MW = meander width; KnL = knob length; KnDm = knob diameter; KnDs = knob distance. Taphonomy symbols: Tws = twisting; Sqz = squeezing; Tlt = tilting; Tck = thickening; Wdn = widening; Elg = elongation; Str = stretching; Stg = straightening; Smo = smoothing; Bnd = bending; Tpr = tapering; Thn = thinning.

<table>
<thead>
<tr>
<th>Ichnotaxa</th>
<th>No.</th>
<th>Biosedlab samples</th>
<th>Category</th>
<th>Aspect</th>
<th>Level</th>
<th>Taxonomy</th>
<th>Taphonomy</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleodictyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Glenodictyum) hexagonum</td>
<td>9</td>
<td>MA13, 18, 28, 57, 115, 118, 145, 160, 179</td>
<td>net shaped</td>
<td>horizontal mesh (deep)</td>
<td>1 of 2</td>
<td>MMS > 10 mm; SD > 2.5 mm</td>
<td>Tws; Sqz; Tlt; Tck; Wdn</td>
<td>Biogenic</td>
</tr>
<tr>
<td>(Glenodictyum) hexagonum</td>
<td>3</td>
<td>MA14, 57, 140</td>
<td>net shaped</td>
<td>horizontal mesh (medium)</td>
<td>1 of 2</td>
<td>MMS > 10 mm; SD > 2.5 mm</td>
<td>Str; Stg; Smo (medium mesh)</td>
<td>Physical (current, creeping)</td>
</tr>
<tr>
<td>(Ramudictyon) hexagonum</td>
<td>5</td>
<td>MA13, 14, 28, 145, 189</td>
<td>knob shaped</td>
<td>vertical outlets</td>
<td>1</td>
<td>KnDm 6–8 mm; KnDs 10–12 mm</td>
<td>Stg; Bnd; Tpr; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Paleodictyon strenzii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isp</td>
<td>2</td>
<td>MA101a–b</td>
<td>net shaped</td>
<td>horizontal mesh</td>
<td>1</td>
<td>MMS > 2 cm; SD > 0.2 cm</td>
<td>Str; Smo</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Paleodictyon major</td>
<td>6</td>
<td>MA177, 182, CEV148, PT129a–c</td>
<td>net shaped</td>
<td>horizontal mesh</td>
<td>1</td>
<td>MMS > 5 cm; SD > 0.8 cm</td>
<td>Str; Smo; Wdn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Paleodictyon italicum</td>
<td>6</td>
<td>MA32, 202, 183, 208a–c</td>
<td>net shaped</td>
<td>horizontal mesh</td>
<td>1</td>
<td>MMS > 2 cm; SD > 0.8 cm</td>
<td>Tws; Str</td>
<td>Physical; biogenic</td>
</tr>
<tr>
<td>Paleodictyon latum</td>
<td>5</td>
<td>MA211a–e</td>
<td>net shaped</td>
<td>horizontal mesh (shallow)</td>
<td>1 of 2</td>
<td>MMS > 0.1 cm; SD > 0.4 cm</td>
<td>Str; Stg; Smo (shallow mesh)</td>
<td>Biogenic; physical (current flow)</td>
</tr>
<tr>
<td>minimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleodictyon</td>
<td>11</td>
<td>MA211a-j</td>
<td>net shaped</td>
<td>horizontal mesh (deep)</td>
<td>1 of 2</td>
<td>MMS > 0.1 cm; SD > 0.2 cm</td>
<td>Elg; Wdn (deep mesh)</td>
<td>Biogenic</td>
</tr>
<tr>
<td>(Glenodictyum) hexagonum</td>
<td>12</td>
<td>MA67, 200, 212a–i</td>
<td>net shaped</td>
<td>horizontal mesh</td>
<td>1</td>
<td>MMS > 30 cm; SD > 1 cm</td>
<td>Tws; Str; Smo</td>
<td>Biogenic; physical</td>
</tr>
<tr>
<td>(Ramudictyon)</td>
<td>1</td>
<td>MA29</td>
<td>knob shaped</td>
<td>vertical outlets</td>
<td>1</td>
<td>KnDm 2–3 mm; KnDs 7–12 mm</td>
<td>Stg; Tpr; Thn; Smo</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>(Squamodictyon)</td>
<td>3</td>
<td>MA102, 164, 213</td>
<td>net shaped</td>
<td>horizontal mesh</td>
<td>1–27</td>
<td>MMS > 2.5 cm; SD > 2.5 cm</td>
<td>Tws; Tck; Wdn; Str</td>
<td>Physical; biogenic</td>
</tr>
<tr>
<td>Lorenziniia plana</td>
<td>5</td>
<td>MA 61, 108; 169, 173, 213</td>
<td>knob shaped</td>
<td>radial</td>
<td>1</td>
<td>KnL > 2.5 cm</td>
<td>Smo; Stg; Bnd; Tpr; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Lorenziniia pastulosa</td>
<td>1</td>
<td>PT141a</td>
<td>knob shaped</td>
<td>radial</td>
<td>1</td>
<td>KnL > 2 cm</td>
<td>Tck</td>
<td>Biogenic; physical?</td>
</tr>
<tr>
<td>Parahaentzschelinia</td>
<td>3</td>
<td>MA105</td>
<td>meandering</td>
<td>wide meanders</td>
<td>1</td>
<td>SD > 3 cm; MW > 40 cm</td>
<td>Sqz; Thn; Tck; Smo</td>
<td>Biogenic; physical</td>
</tr>
<tr>
<td>isp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicolithus ramosus</td>
<td></td>
<td>MA23a–d</td>
<td>knob shaped</td>
<td>group</td>
<td>1</td>
<td>KnL > 3 cm</td>
<td>Smo; Stg; Bnd; Tpr; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Bergaueria</td>
<td>4</td>
<td>MA90, 92, 165, 174a–d</td>
<td>knob shaped</td>
<td>scattered</td>
<td>1</td>
<td>KnL > 0.2 cm</td>
<td>Smo; Stg</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>cf. hemisphérica</td>
<td></td>
<td>MA85.188,192</td>
<td>knob shaped</td>
<td>single</td>
<td>1</td>
<td>KnL > 15 cm</td>
<td>Smo</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Plag-shaped structures</td>
<td>15</td>
<td>MA213a–q</td>
<td>knob shaped</td>
<td>scattered</td>
<td>1</td>
<td>KnL > 5 cm</td>
<td>Tck; Tlt; Smo</td>
<td>Biogenic; physical</td>
</tr>
<tr>
<td>Cosmorhaphe lobata</td>
<td>1</td>
<td>PT 126</td>
<td>meandering</td>
<td>wide meanders</td>
<td>1</td>
<td>SD > 3 cm; MW > 40 cm</td>
<td>Sqz; Thn; Tck</td>
<td>Biogenic; physical</td>
</tr>
<tr>
<td>Cosmorhaphe parva</td>
<td>1</td>
<td>MA 105</td>
<td>meandering</td>
<td>narrow meanders</td>
<td>1</td>
<td>SD > 2.5 cm; MW > 2.5 cm</td>
<td>Tck; Smo</td>
<td>Biogenic; physical</td>
</tr>
<tr>
<td>Desmograpton ichthyiforme</td>
<td>4</td>
<td>MA25, 81, 93, 94</td>
<td>ramous shaped</td>
<td>biramous, straight string</td>
<td>1</td>
<td>SD > 0.8 cm; SL > 2 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Desmograpton dertensoni</td>
<td>16</td>
<td>MA36, 88, 168, 175, 184, 186, 190, 205, 212a–g</td>
<td>ramous shaped</td>
<td>biramous, straight string</td>
<td>1</td>
<td>SD > 0.8 cm; SL > 2 cm</td>
<td>Sgf; Smo; Tck; Thn; Tws; Sqz</td>
<td>Physical; biogenic</td>
</tr>
<tr>
<td>Desmograpton</td>
<td>1</td>
<td>MA36</td>
<td>ramous shaped</td>
<td>biramous, straight string</td>
<td>1</td>
<td>SD > 0.8 cm; SL > 0.9 cm</td>
<td>Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>cf. alternatum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleomeadron transversum</td>
<td>1</td>
<td>MA192</td>
<td>ramous shaped</td>
<td>biramous, curved string</td>
<td>1</td>
<td>SD > 2 cm; MW > 3 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Paleomeadron elegans</td>
<td>1</td>
<td>CEV53</td>
<td>ramous shaped</td>
<td>biramous, curved string</td>
<td>1</td>
<td>SD > 1.8 cm; MW > 4.5 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Paleomeadron robustum</td>
<td>1</td>
<td>CEV178</td>
<td>ramous shaped</td>
<td>biramous, curved string</td>
<td>1</td>
<td>SD > 2 cm; MW > 12 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Paleomeadron isp.</td>
<td>1</td>
<td>MA213f</td>
<td>ramous shaped</td>
<td>biramous, curved string</td>
<td>1</td>
<td>SD > 1 cm; MW > 12 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Uroehelminthoida dertensoni</td>
<td>4</td>
<td>MA27, 37, 54, 191</td>
<td>ramous shaped</td>
<td>uniramous, tightly meander</td>
<td>1</td>
<td>SD > 2 cm; MW > 35 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Uroehelminthoida isp.</td>
<td>5</td>
<td>MA60, 62, 68, 69, 122</td>
<td>ramous shaped</td>
<td>uniramous, tightly meander</td>
<td>1</td>
<td>SD > 2 cm; MW > 35 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Uroehelminthoida appendiculata</td>
<td>1</td>
<td>MA64</td>
<td>ramous shaped</td>
<td>uniramous, tightly meander</td>
<td>1</td>
<td>SD > 1 cm; MW > 12 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Helmintenhopla isp.</td>
<td>1</td>
<td>CEV48</td>
<td>meandering</td>
<td>tightly meander</td>
<td>1</td>
<td>SD > 1 cm; MW > 40 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Helmintenhopla japonica</td>
<td>2</td>
<td>MA199a, CEV199b</td>
<td>meandering</td>
<td>tightly meander</td>
<td>1</td>
<td>SD > 1 cm; MW > 40 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Protopaleodictyon minutum</td>
<td>2</td>
<td>MA35, 203</td>
<td>ramous shaped</td>
<td>winding meander</td>
<td>1</td>
<td>SD > 2 cm; MW > 30 cm</td>
<td>Sgf; Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
</tbody>
</table>
TABLE 3—Continued.

<table>
<thead>
<tr>
<th>Ichnotaxa</th>
<th>No.</th>
<th>Biosedlab samples</th>
<th>Category</th>
<th>Aspect</th>
<th>Level</th>
<th>Taxonomy</th>
<th>Taphonomy</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protopalaeodictyon</td>
<td>1</td>
<td>MA61</td>
<td>ramous shaped</td>
<td>winding meander</td>
<td>1</td>
<td>SD >1<2mm;</td>
<td>Smo; Tck; Thn</td>
<td>Physical (current flow)</td>
</tr>
<tr>
<td>Spongeliomorpha</td>
<td>2</td>
<td>MA15, 87, 197, 201, CEV 159</td>
<td>string shaped</td>
<td>straight string</td>
<td>—</td>
<td>SD >1<7mm;</td>
<td>Smo; Tck; Tlt (others P)</td>
<td>Physical; biogenic</td>
</tr>
<tr>
<td>Protovirgularia vagans</td>
<td>1</td>
<td>MA234d</td>
<td>string shaped</td>
<td>meandering string</td>
<td>—</td>
<td>SD >5<20mm; SL >10<220mm</td>
<td>Smo; Tck</td>
<td>Biogenic (mainly)</td>
</tr>
</tbody>
</table>

FIGURE 2—Biogenic taphonomic features affecting mesh of large to small *Paleodictyon* specimens preserved as hypichnia at soles of thin-bedded turbidites, Marnoso Arenacea and other formations, northern Apennines, Oligocene-Miocene. Scale bar is 1 cm for all samples. A) *P. (Glenodictyum) hexagonum* mesh with biogenic squeezing (Sqz) and twisting (Tws; see circle) by bulldozer activity (arrow); sample MA18, Verghereto NW. B) Mesh of *P. (Glenodictyum) hexagonum* with thickening (Tck) and cells crossed by tubular burrows. Physical unidirectional stretching (Str) is present and major axis lengths of hexagons triple; sample MA57, Canili of Verghereto. C) Microspots in mesh walls of *P. (Glenodictyum) hexagonum* induced by microburrowing to produce thickening (Tck) and widening (Wdn); sample MA140, Città di Castello (M. del Sasso locality). D) Detail of B showing widening (Wdn) and stretching (Str) of cells and branching points; note holes and circles (upper white arrows) and miniknobs (lower white arrows). E) Elongation (Elg) associated with thinning (Thn) in *Paleodictyum* isp., *P. minimum* (below) and *P. majus* (top); thickening (Tck) produces horseshoe shape; sample MA211a, Alpe di Poti (Arezzo area). F) Elongation (Elg) involves net meshes in small-sized *P. latum* with two preferred orientations (arrows); sample MA211b, Alpe di Poti (Arezzo area). G) Two net levels (2Msh) characterize large *P. hexagonum*; the deep one is elongated (Elg), sample MA28, Città di Castello (north of Monte S. Maria Tiberina). H) Burrowing activity (tubular intrusion, see arrow) induces tilting (Tlt) and thickening (Tck) of *P. hexagonum* mesh; sample CEV179, Mandrioli Pass.
or more cells) can be twisted around an axis rotating up to 80° and the trace fossil can also be slightly translated from its original position (Fig. 4). In large specimens of *Paleodictyon hexagonum*, twisting has been observed in a lump of contiguous cells (Figs. 2A, 5). A sample of *Desmograpton dertonensis* shows opposite meanders that are slightly twisted and displaced by the intrusion of a burrower in the mud (e.g., predepositional *Protovirgularia*).

Squeezing.—Although squeezing may develop together with twisting (e.g., in a specimen of large *Paleodictyon hexagonum*), it can be considered separately among the other taphonomic characteristics because it is an exclusively horizontal deformation (Fig. 4). Squeezing is easy to establish when it develops along the same plane. In this case, hexagonal meshes partially or totally change in shape; cells become closer, with an overall width reduction of 70% (Fig. 2A). Squeezing is difficult to quantify in meander- or knob-shaped trace fossils, although it has been observed in *Desmograpton dertonensis* and *Cosmorhaphe lobata* specimens.

Tilting.—Tilting is deformation that uplifts the whole plane of the mesh, pivoting on one side and tends to rise progressively from its original position; a slight translation can also be observed. In many specimens of large *Paleodictyon*, tilting was produced by the intrusion of a burrower below the mesh level; the push of the intruder indirectly deformed many hexagons of the mesh (Fig. 2H). Tilting, as in the case of squeezing, was considered separately among the deformational characteristics because it linearly and progressively affects some rows of hexagons (Fig. 4).

Thickening.—This characteristic is also observed in part of the hexagons of the net of large *Paleodictyon* specimens; it may also be associated with such characteristics as squeezing and twisting. Thickening was produced by the subsequent deformation of both contiguous cells and branching points in mesh-shaped trace fossils (Fig. 2B, 4). Thickened strings—their diameter commonly doubles, reaching 6 mm—usually develop oriented transversally to the stretching direction (Fig. 2D). When longitudinal segments or hexagon vertices are thickened, they contain many mini-knobs, and the tunnels are irregularly distributed (see white and black arrows, respectively in Fig. 2C). In two samples, dark grains
and rounded, coarse quartz crystals were densely packed. Thickened fillings were often burrowed, and many smaller diameter trace fossils were also present (meiofauna?, see holes and circles of 1–2 mm indicated by three upper white arrows in Fig. 2D).

Widening.—Although not very common, this feature is also associated with thickening. It may be found at branching points in large *Paleodictyon* but is observed also in other string parts. When the biogenic activity of subsequent burrowing was intense, some parts were thickened, whereas others were widened. Thickening, however, caused an omnidirectional expansion of strings (vertically and laterally), whereas widening produced

FIGURE 4—Taphonomic features (six biogenic and six physical). See text for explanation.
FIGURE 5—A synthetic model to explain taphonomic characteristics of hypichnial *Paleodictyon* specimens and other graphoglyptids and epichnial trace fossils. (A) Predepositional burrowing. (B) Biostratigraphic features (B1 biogenic and B2 physical) affecting meshes, shafts, knobs, and ramous meanders. (C) Final stage, initial filling and burial of turbidite sand. Fine spread level (FSL) is a 0.5–1.0-mm-thick level, which preserves all taphonomic features of graphoglyptids and mud-current lineations (MCL).
a reduction in thickness (vertical flattening) with a lateral expansion of hexagons; in many graphoglyptid specimens, expanded branching points are directly contiguous to thickened hyporeliefs (Figs. 2C–D, 4). Mini-knobs are abundant in widened parts of tunnels (see Fig. 2D). Mini- and micro-knob concentrations suggest that microbioturbation was intense in branching points in which the concentration of the organic matter (and bacteria?) were abundant; see very small, externally oriented knobs indicated by three lower white arrows in Figure 2D. In very rare instances compaction flattened the entire mesh; this has been observed in both strings and all branching points of small- to medium-sized *Paleodictyon*. A similar aspect is the compactional collapse of burrows in mud described in turbidite deposits (cf. Seilacher, 1977b, fig. 1f).

The bulldozer activity induced by mud-stirring burrowers is the major cause of twisting, squeezing, tilting, thickening, and widening. This is especially clear when effects of intrusion in mud are recognizable along the x-y-z axes. In many cases, hexagons were squeezed or twisted and thickened or widened, and their shape tends to change from hexagonal to rectangular or irregular (Figs. 2A–B in the center). In other instances meshes may be tilted up vertically, 2–3 cm from their original level, and both their diameter and original shape are preserved (Fig. 2H). Twisting, squeezing, and tilting are usually more developed near the point of maximum pressure (i.e., the point of bulldozer intrusion, Figs. 2A, H); the mesh is tightly arranged with curved festoons around the source of intrusion. This suggests that the mud was stiff but still plastic (Ekdake, 1985). In other cases, microbioturbation produced a considerable increase in the volume or in the diameter (e.g., thickened and widened points). Microbioturbation may be present also in bulldozer-induced deformations and it may emphasize other taphonomic features.

Elongation.—This feature is deformation directly controlled by the trace-maker. It involves the lengthening of hexagons approximately in the same direction; variation in the length of each hexagon is the same for the entire mesh. This phenomenon is very interesting in *Paleodictyon minutum*, *P. latum*, and *P. majus* (Figs. 2E, 4). In the deep mesh of *P. minimum* and *P. latum*, the delicate rows of hexagonal cells are elongated in the same direction (Figs. 2E–F). The maximum mesh size has two different axes (minor axis of 0.1 mm, major axis of 0.3 mm, respectively; Fig. 2F), whereas the string diameter (mean value 0.2 mm) in the deep mesh does not vary. Analysis of hundreds of cells has shown that the elongation value was the same in all 11 specimens. The living organism(s) may have controlled elongation in small *Paleodictyon* specimens during the (late?) burrowing phase as suggested by Crimes and Crossley (1980). This characteristic does not appear to be a typical biostromatolitic feature *sensu stricto*. The major axis of the hexagons may elongate parallel to the current indicators and maximize the passive ventilation of the open burrow system (Crimes and Crossley, 1980). In small *Paleodictyon* as well as in many other graphoglyptids, therefore, current should be the most important factor that influences the size and shape of the burrows. Other biological factors have also been suggested for such deformation (Seilacher, 1977a; Bromley, 1996; Wetzel, 2000). Elongation was observed in two ichnospecies in the same sample (e.g., *Paleodictyon majus* with *P. strozzii*, or *P. minimum* with *P. majus*) (Fig. 2E); in these cases, the organisms that produced these traces interacted in a small space in order to exploit physical irrigation by currents (commensal relationships, see Ray and Aller, 1985; Bromley, 1990).

Taphonomic Features Induced by Physical Agents

In the studied specimens, deformation attributable to physical factors acts unidirectionally (Fig. 4) and was produced by such physical agents as the current action before or after burrowing. Fluting can be considered the main cause of physically induced features. Physical deformation results in many taphonomic byproducts affecting predepositional hypichnial trace fossils (Fig. 4).

Smoothing.—Smoothing (*Smo*) is a typical feature in many samples that resulted from a flushing process that caused partial destruction of the down-current side of tunnels and produced a broad, apron-shaped structure or tail (Figs. 4, 6E). These structures, 3–40 mm long, that form an angle of 45–90° with the string development, were very abundant (>20 in one sample) and were probably produced in soft mud by selectively altering the shape of the burrows (Fig. 3G). They are analogous to the fluted half-reliefs described by Seilacher (1977b) and Crimes and Crossley (1980). Smoothing has been mainly reported in meander-shaped *Hemithorhaphes* and ramous-shaped *Desmograpton* and *Urohelmithoida*, but it has also been observed in knob-shaped shafts of large *Paleodictyon* specimens (Fig. 3A) and in the plug-shaped trace fossil *Bergaueria*, *Lorenzina*, and *Parahaentzschelinia*.

Bending.—Bending (*Bnd*) is one of the typical effects of fluting and suggests the existence of currents with different directions. Bending and smoothing are frequently associated in the same sample, but their orientations are different. This association of bending and smoothing as products of unidirectional currents leads to the exclusion of compaction as the primary factor. Bending is also present when knobs are not compacted. It has been found in the shafts of large *P. (Ramodictyon) hexagonum*, and has also been observed in such plug-shaped forms as *Parahaentzschelinia*, where typical bent segments of the down-current tail have been observed. The bending ranges from 30° to 80°, and tends to give the trace fossil a hooked appearance (Figs. 3A, details enlarged in oval; 6E).

Stretching.—Stretching (*Str*), as a typical effect of fluting, differs substantially from elongation because physical processes rather than biological activities produce stretching. The axis of displacement of the hexagons varies irregularly within the same mesh, and groups of stretched hexagons are located close to those that are not stretched. Stretching was observed in four large *Paleodictyon* specimens (*P. hexagonum*), six medium-sized (*P. majus*) and four small-sized ones (*P. latum* and *P. minimum*). In the larger forms, the major axis of the hexagons tripled in length, from 8–10 mm to 24–30 mm (Fig. 2B). Here, the stretching is usually oriented in the same direction and some rows of cells are stretched more than others (Figs. 2B, 3A, 4). Stretching also affects the shafts of large *P. (Ramodictyon) hexagonum*. Cross-section shafts may triple in length (up to 14 mm in 5 specimens; see Fig. 3A). Shafts elongate following a unidirectional alignment that forms an angle ±90° with the main stretching orientation of *Glendictyon* mesh (see white arrows of Str in Figs. 3A–B). Radiating and grouped elements of knob-shaped *Lorenzina* and *Parahaentzschelinia* were stretched, and smoothed structures occurred (Figs. 3B–E; 6E, *Ramodictyon* shafts). Stretching is rare in ramous-shaped *Desmograpton* (Figs. 3F, H) and *Urohelmithoida* and mainly involves longitudinal bars. Some stretched hexagons show thickened parts; in this case thickening occurs unidirectionally producing horseshoe-shaped structures in some specimens of *Paleodictyon majus*. These may have been related to an increased volume of particles due to the physical action of a current (Fig. 2E). Thickening, therefore, caused by physical action should be considered separately from the same effect produced by a biogenic action, even though only one type is shown in Figure 4. In *Paleodictyon majus* (Fig. 2E) and in another specimen of *Urohelmithoida dertonensis* (Fig. 3H; see the thick-branched meander enlarged in the oval), thickening seems to indicate a superimposition of biogenic activity (Figs. 2E, 3H), which was probably induced by burrowing meiofauna (Bromley, 1996).

Tapering.—Tapering (*Tpr*) has rarely been observed; it mainly affects knobs and shafts as well as the mesh hexagons of large- to medium-sized *Paleodictyon* specimens (Fig. 3A). Knobs and cells changed their shape to subtrapezoidal. Bending and tapering have been observed as two different effects of the same flushing process(es) produced by currents (Fig. 3A), and some parts of the studied burrows were selectively affected (Fig. 4). Tapered and bent segments usually end in smoothed structures (Figs. 3A, 4), which are unidirectional and iso-oriented and form a 50°–80° angle with the main stretching axis. This suggests an interaction with the current flow at the water-sediment interface (see directions of Bnd, Tpr, and Smo with respect to those of Str in Fig. 3A).
FIGURE 6—Hypichnial graphoglyptids and epichnial traces developed in thin-bedded turbidites of deep-sea fringe deposits in the Verghereto High, Verghereto Formation, Miocene. A) Top of thin-bedded turbidite shows post-depositional trace fossils; endichnia are those represented in B and C in the circle; note the turned-out sample exhibiting the sole with shafts of *Paleodictyon* (*Ramodictyon*) *hexagonum*; hammer for scale. B) Detail of rippled top of bed with *Scolicia prisca* trails; hammer for scale. C) Detail of same bed with *Scolicia cf. vertebrais*; knife is 6 cm long. D) Sole of same bed with *Bergaueria*? and *Desmograpton*; bar is 1 cm. E) Detail of bent (Bnd) and smoothed (Smo) shafts of *P. (R.) hexagonum* at sole of thin-bedded turbidite; note mud-current lineations MCL (black arrows); bar is 2 cm. F) Top of bioturbated bed by *Nereites* isp.; Balze of Verghereto; knife is 6 cm long. G) General view of centimeter thin-bedded turbidites forming fringe deposits in the southern side of Verghereto High; bar is 1 m long.

Thinning.—Thinning (Thn), the decrease in string width, has been observed in partially preserved meshes, and string width may be reduced by one-half (Fig. 4). This feature has been observed in *P. majus* and *P. minimum* and may be produced by stretching (Figs. 3C–D). In fact, plastic deformation of a stretched structure will result in a thinning perpendicular to the direction of stretching.

Straightening.—Straightening (Stg), the final unusual type of deformation, was observed in two small species of *Paleodictyon* (*P. minimum*, Figs. 3C–C1, and *P. latum*), whereas it is less developed in *P. majus*. This type of deformation is observed when lateral tunnels of cells are oriented along lines parallel to the main current flow direction; the string diameter of the lateral walls is also subject to thinning (Fig. 3C–D). Straightening is hard to interpret because the studied material cannot be examined in detail due to the poor preservation of some samples (Fig. 4). In many specimens, straightening and thinning only affect some parts of a mesh (Fig. 3C1), and other parts remain intact and are not deformed (Fig. 3C1). These features also affect many minute graphoglyptids distributed throughout the same level.

DISCUSSION

The complete geometry of the graphoglyptids cannot be easily determined due to the paucity of information about their structures in deep-sea systems. Some are horizontal, as in *Paleodictyon* meshes, whereas others are helicoidal, twisted, or radiated forms developed in a complex 3-D method (see figures in Seilacher, 1977b; Uchman 1995a and references therein). Some forms disappear from the bedding plane and intrude in the muddy sediment or vice versa (*e.g.*, *Protovirgularia vagans*), becoming endichnia and related variants (see also Monaco and Caracuel, 2007; Monaco et al., 2007). This phenomenon could be due to irregularities in the seafloor, but the variation in the orientation of the traces that enter the sediment from the surface could also be a response to food distribution and to changes in various geochemical parameters. This was observed in *Protovirgularia* and in other cases of predepositional string-shaped burrows (*e.g.*, *Spongeliomorpha*). These traces often changed from horizontal to oblique by intruding into the mud and displacing pre-existing physical and biological structures (Fig. 7). This kind of change in geometry is less common for graphoglyptids.

Differential compaction was another problem in the taphonomic study because it could affect trace preservation and influence the observable taphonomic features. Caracuel et al. (2000) discussed this issue regarding the Early Jurassic Ammonitico Rosso facies. The compaction of some trace fossils, mainly endichnia, in those deposits varied depending on the lithology. In some instances, the tunnel cross sections were nearly circular, whereas in other cases they were elliptical. Intermediate shapes were also observed. These findings suggest that the trace fossils underwent a progressive flattening due to a compaction that was perpendicular to the stratification (Caracuel et al., 2000). After analyzing several samples, Caracuel et al. (2000) defined decompaction numbers (nd), whose
values depend on the lithology; higher values were assigned to clayey marl levels (nd = 2.5), intermediate values for marls (nd = 1.67), and lower values for limestones or marly limestones (nd = 1.43) and calcarenites (nd = 1.10). In the case of graphoglyptids, deformation due to differential compaction of the predepositional traces formed on mud is certainly possible because it was probably of a greater magnitude than that of the overhanging calcarenite bed. In some thick levels (e.g., high-density turbidites), such taphonomic features of predepositional graphoglyptids as widening, tapering, and perhaps bending could have been enhanced by mass deposition of the sandy turbidite material. Bending and tapering are always orthogonal to the direction of maximum compaction and are iso-oriented with the smoothing and mud-current lineations. This suggests that the vertical compaction processes had less effect than the horizontal current-induced deformations. Furthermore, widening was never associated with bending or tapering, whereas flattened branching points were found in the same mesh level very close to other thickened parts associated with microbioturbation.

Differential compaction is also a process that acts on a single level. Sand filling in tubes surrounded by mud could surely cause differential lateral deformation, as the degree of compaction in the sand is less than that in the surrounding mud. This process enlarged and flattened the branching points of the meshes, or produced other complex deformations in samples that displayed anomalous thickening and widening. The constant presence of undeformed microbioturbation within or around the thickened areas, however, suggests that this localized compaction was either subordinate or complementary (see Knaust, 2007). Although the diagenetic evolution of the system in this location has not been adequately studied, various kinds of differential compaction can be distinguished, based on reasons presented here. These processes are negligible or circumscribed in relation to the physical action of the currents.

To explain the taphonomic characteristics of *Paleodictyon* specimens as well as other graphoglyptids and nongraphoglyptid trace fossils, a synthetic three-step model is proposed (Fig. 5): (1) predepositional burrowing; (2) biostatigraphic features (B1 biogenic and B2 physical) affecting hollow shaft, knobs, meshes, and famous meanders; and (3) initial filling and burial of turbidite sand.

Predepositional Burrowing.—In the preturbiditic stage, tunnel systems were produced in a muddy seafloor, forming nets of hexagonal meshes and vertical shafts, or plug-shaped, meander-shaped or string-shaped burrows (Fig. 5A). *Paleodictyon* nets and shafts have been found in modern deep-sea sediment and in box cores from the Mid-Atlantic Ridge. Few studies have been conducted on the organisms that produced these traces so their identity is uncertain (Rona and Merrill, 1978; Ekdale, 1980; Rona et al., 2003; Seilacher, 2007). Swinbanks (1982) suggested that infaunal xenophyophores—giant protozoans that can produce branching, polygonal meshes in poorly sorted sandy mud fill—may have been the leading producers of geometrical networks (mainly *Oculla sp.*; Levin, 1994). As observed in modern seafloors (Gaillard, 1991), the main mesh level lies horizontally in the mud and is exposed on the seafloor, usually 2–4 cm below the sediment-water surface, whereas shafts which connect meshes to the sea-floor surface are mostly vertical (see IMAX movie, Low, 2003). The 2–4 cm difference in height (the step in Figs. 3A–B, 5B1) has also been observed in samples from the Apennines. The step between the deep mesh level (*Glenodictyum*) and the surface shaft level (*Ramodictyon*) is the erosional gap between the two levels. The step allows the original flow characteristics to be recognized. Where the flow was stronger and eroded more, the mesh level was reached and was exposed to taphonomic action. Only the shafts were exposed and preserved with their typical elongation where the flow was weaker (Elg in Fig. 5A).

This step can be considered a diagenetic “freezing” of multilayer erosion.

As observed in this study, other mesh levels can develop and likely indicate that there are different strategies for utilizing the seafloor deposits. Multilevel burrowing has been observed in large and small *Paleodictyon* specimens; this suggests that there are similar strategies for exploiting the muddy seafloor (Fig. 5A). Deep levels could be used to
find a more stable tier within the seafloor or for farming bacteria at lower levels. In contrast, shallow levels could be the site of new activity of tracemakers keeping pace with sediment accretion, or reflect the need to colonize a shallow horizon in order to oxygenate the burrow systems (see 2Msh in Fig. 5A).

Biostratinomic Features.—Prior to the final burial, the late phase consists of biogenic and physical processes (see Fig. 5B1 and 5B2, respectively) that affect meshes, knobs, meanders and strings. It may take place in the mud, thereby producing typical biostratinomic features as bulldozing, which is the most important surface feature. As usually defined, bulldozing only takes place near the surface or in the shallowest layers and induces 3-D deformation (twisting, squeezing, tilting, and thickening). Corresponding processes that take place in deeper levels (burrowing) cause similar mesh deformation (Fig. 5B1). The intruding action in the mud is very common. The string-shaped trace fossils Spongeliomorpha and Protovirgularia bend and displace the pre-existing structures in several studied specimens. In one instance, an intrusion between the meanders of a Desmograpton forms opposite rows of meanders that are about 2 cm from each another. Such benthic community members as irregular echinoids, crustaceans, teleost fishes, polychaetes and many other soft-bodied organisms can produce bulldozing and burrowing in many types of marine media (substrates) that comprise the seafloor (Seilacher, 1974; 2007; Frey and Pemberton, 1984; Ekdale, 1985; Kidwell, 1991; Goldring, 1995; Kanazawa, 1995; Bromley, 1996; Monaco et al., 2005). Few direct observations have investigated the benthic behavior in deep-sea muddy environments (Rona and Merrill, 1978; Gaillard, 1991; Rona, 2004). Biogenic deformation can be produced by the burrowing of crustacean decapods or irregular echinoids; they deform the sediment while moving through it. This kind of activity squeezes many particles (Kanazawa, 1995; Monaco et al., 2005) and may affect graphoglyptids. Microburrowing of meiofauna is another common process that produces thickening and widening in mesh walls and may involve many parts of the burrow (Fig. 5B1). This process can also be generated by a microbioturbating community and may be related to the activity of microorganisms (Yingst and Rhoads, 1980; Knaust, 2007). Microbioturbation also is found inside open, uninhabited graphoglyptid mesh. This suggests that elongated or enlarged portions of many burrows (Figs. 2D, 5B1) were ideal zones in which microtrace-makers were able to exploit microbial growth, organic matter, and bacteria concentrations (amensalism relationships, see Levinton, 1977).

Physical processes are those caused by the effects of currents that induced unidirectional deformations (stretching, straightening, smoothing, thickening, bending, tapering, and thinning; see Fig. 5B2). These characteristics are associated with abundant microstructures induced by currents, namely minigrooves, which developed in interturbidate deposits. Minigrooves are straight, horizontal lineations, 10–30 mm in length and 0.2–0.8 mm thick. They are arranged in groups of 5–10 per square decimeter and are distributed parallel to many biostratinomic features. They were probably formed at the sediment-water interface, which would adapt them to life in sloped areas, where longitudinal to transverse-oriented burrow parts are elongated with many large specimens, some levels of meshes are superimposed and another mesh at a different, more stable level. In fact, as can be seen in one instance, the organisms tried to repair their work, they produced another mesh at a different, more stable level. When the organisms tried to repair their work, they produced another mesh at a different, more stable level. In fact, as can be seen in one instance, the organisms tried to repair their work, they produced another mesh at a different, more stable level. When the organisms tried to repair their work, they produced another mesh at a different, more stable level.

Organisms that produced large P. hexagonum were probably well adapted to life in sloped areas, where longitudinal to transverse-oriented bottom currents were active (Crimes and Crossley, 1980). In these areas, bulldozing, burrowing, and slope instability destroyed and deformed parts of the mesh. When the organisms tried to repair their work, they produced another mesh at a different, more stable level. In fact, as can be seen in many large specimens, some levels of meshes are superimposed and translated by 10–20 mm. This suggests that there was a biogenic response to burrow destruction or seafloor instability (Fig. 2G). Where creep is lacking, as in some stable areas of the basin plain subenvironments where fine-grained, regular, thin beds are found, such small Paleodictyon species as P. strozzii, P. majus, P. italicum, P. latum, and Paleodictyon isp. lengthened their cells equidimensionally and their action reflects the response of the tracemaker(s) to the currents.

Final Stage. Initial Filling and Burial by Thin-bedded Turbidite Material.—The final stage consists of a progressive deposition of fine material with two different phases: an initial slow filling and a subsequent burial by thin-bedded turbidite deposit (Figs. 5C1–2). The initial filling slowly coated the graphoglyptids and all predepositional taphonomic features to form a thin layer, 0.5–1.0 mm thick, of fine grains (carbonate silt and fine sand), in which mica was virtually absent. The initial filling is here indicated as the fine spread level; it sticks to biogenic mucus film and preserves all delicate structures (FSL in Fig. 5C1). The preservation...
of all the microstructures, including complete 0.06 mm nets, suggests that the fine spread level must have formed progressively and delicately. It may have acted like a gluey film trapping fine particles settled from the suspension on the seafloor; an early cementation occurred creating a thin firm level that glued to the micaceous-rich material of the turbidite. The high carbonate content in the basal level indicates that it must have been affected by early consolidation and had hardened before the first phases of turbidite deposition. This early cementing film could explain the perfect preservation of the microstructures, even though diluted turbiditic flows were deposited subsequently. This process may show some similarities with the penecontemporary partially lithified crust (PPLC) described by Woodmorappe (2006), but it needs to be investigated further given the new field data and specific laboratory analyses (e.g., geochemistry). Similarly, virtual absence of mica flakes in the basal film, which is very abundant in all the overlying laminae (see Fig. 7B), could be the result of a different type of flow with different composition, or micaceous elements may not have been preserved. This issue needs further petrographic investigations. No erosion or further compaction took place during this phase, and all of the microstructures in the interturbidite mud, such as mud-current lineations, mesh elongations (straight striae), and other taphonomic features of phase B have been preserved. Where such small *Paleodictyon* species as *P. minimum*, *P. strozzii*, *P. majus*, *P. italicum*, *P. latum*, and *Paleodictyon* isp. and other delicate graphoglyptids are preserved, the fine spread level can be observed as thin-cemented film in a side view.

The second phase is the subsequent deposition of thin-bedded material from low-density turbidite flows (Fig. 5C2). The material consists of many thin laminae, 0.5–1 mm thick, that are very rich in mica flakes (Fig. 7B, arrows). Micaceous sandy laminae may have been formed by the settling from suspension followed by thin laminar flows from the diluted flows. Deposits may correspond to the distal facies F9a and F9b of the low-density turbidity currents (Muti, 1992), which are partially compatible with the upper divisions of the Bouma sequence. The erosive potential of such a turbidity flow is insignificant, and a settling from suspension occurs in the distal areas. According to Pickering et al. (1989) and Mutti (1992), laminar flows progressively turn into turbulent ones in more distal areas, and their erosive potential on the seafloor decreases progressively. Typical erosion may have been limited to the bypass areas (see scoured surfaces in Uchman, 1999a, pl. 15, fig. 5) and was induced by traction carpets and tractive flows. When traction carpets (i.e., F7 and other proximal facies) developed, the turbidite sols are devoid of any graphoglyptids but are rich in *Scolicia strozzii* and *Ophiomorpha* isp., which are typical post-depositional trace fossils of high-energy regimes (Tunis and Uchman, 1996a, 1996b; Uchman, 1999; Wetzel and Uchman, 2001; Uchman et al., 2004).

Trace fossil communities are also typically found in the top of the turbidite beds. In some *Paleodictyon*-bearing beds, current ripples are found in facies F9b (e.g., Verghereto fringing deposits). Here the bed sequence starts and ends with ripples, which are orthogonal to the main turbidity flows. It can be inferred that bottom currents persisted and it is crucial to understand the facies development, as indicated in many basin analyses (Crimes and Crossley, 1980; Pickering et al., 1989; Mutti, 1992; Rebesco and Viana, 2005). The silty to muddy, rippled, topmost surface usually has a very rich trace-fossil community totally different from the predepositional graphoglyptid assemblage (Figs. 6A–G). This top community (e.g., *Montecoronaro* of Verghereto) is usually characteristic of the 3–6-cm-thick, thin-bedded turbidite beds (see Fig. 6G) and the predominant post-depositional trace fossils are *Scolicia priscia*, *S. vertebrales* (cf. Uchman, 1998, fig. 5Bb), *Nereites mossouriensis*, and other epichnial forms (Figs. 6B–C, F). These post-depositional trace fossils were produced by opportunistic organisms (mainly irregular echinoids) under specific seafloor conditions (see sequential colonization of Wetzel and Uchman, 2001; and tiering pattern of Uchman, 1995b). There was competition to exploit the organic matter and abundant food deposited by turbidite settling (Figs. 6A–E). The *Scolicia priscia* ichnoassemblage is well exposed in a 50-m² area in the Montecoronaro outcrop where densely packed trails of 100 specimens/m² have been recorded (Figs. 6A–C).

CONCLUSIONS

This study is an attempt to understand the widespread graphoglyptid preservation patterns in turbidite systems. The conclusions discussed below can be considered hypotheses that require additional analysis and testing of their facies distribution based on the data gathered from other flysch deposits of the northern Apennines and from deposits of different ages and locations.

Graphoglyptids and associated hypichnial trace fossils are crucial for turbidite analysis; they are abundant and well preserved in some beds (e.g., fine-grained deposits). Taphonomic features of meshes, shafts, knobs, meanders, and strings may be quantified by observing the changes in their geometric patterns. Biogenic and physical taphonomic features are particularly important because some of these are typical of large specimens (e.g., stretching), whereas others are characteristic of smaller ones (e.g., elongation). Certain characteristics can also be recognized at different depths below the seafloor (i.e., two different meshes for many *Paleodictyon* specimens). Some of the features suggest that biogenic 3-D deformation—mainly twisting, squeezing, tilting, and thickening—are often controlled and enhanced unidirectionally by such physical agents as currents. This is demonstrated by elongation, which supports the hypothesis of Crimes and Crossley (1980). These currents cause other such flowing deformations as bending, tapering, straightening, and smoothing. Bottom instability (e.g., creep) is another factor that influences deformation in the slope areas, which are irregularly distributed following the complexity of the Apennine foredeep basins. In some thin-bedded turbidites (i.e., fringing deposits of the Montecoronaro–Verghereto High), both biogenic- and physically induced taphonomic characteristics of hypichnial and epichnial communities can be compared.

Deep-sea sedimentologists and ichnologists have explained the preservation of graphoglyptids and other hypichnia at the soles of turbidites in a rather dogmatic way, but a truly convincing model for taphonomic alterations has never been proposed. Two hypotheses are proposed in relation to two different types of currents.

The first relates to long-term current action prior to a turbidite flow (interturbiditic bottom currents). To validate this hypothesis—that contour currents precede (even for a long time) the turbiditic filling—many regional studies of the interturbidite mud and tool marks at the sole of turbidites are needed. Paleocurrents that are orthogonal or that clearly diverge from the main turbiditic flows should be examined. While this aspect was presented in the model of Crimes and Crossley (1980), an orthogonal dispersion of currents was never observed in the present study. Proof of the existence of an unambiguous causal relationship between the taphonomic characteristics of the ichnotaxa (see elongation) and the action of interturbiditic currents would be of great importance. Such proof is difficult to demonstrate, especially in such an articulated foredeep like that of the Apennine. Detailed geological analyses, geochemical studies, and comparisons of predpositional structures in interturbidite mud are needed. Preservation of delicate variations in graphoglyptid shape and mud-current lineations implies that the erosive potential of turbidite flows, described in the literature, has been overestimated and difficult to appraise. In contrast, the bottom-current activity that affects the interturbidite mud is poorly understood and may be underestimated.

The second hypothesis relates to current action prior to and during the turbiditic flow (many models). This idea implies that the paleocurrent indicators are arranged in the same direction as the main turbiditic flow, or may vary by a few degrees due to flow interference. To validate this hypothesis, it would be important to demonstrate that flows were selective and so delicate that they preserved all features and produced only minimal deformation of the graphoglyptids. Flows twisted the burrows, but did not erode them; they stretched hexagons but preserved minute structures, up to 0.06 mm thick. Generally speaking, this scenario does not fit.
ACKNOWLEDGMENTS

Field work was carried out with the help of M. Gabrielli, M. Quirini, M. Miligetti, and T. Trecci. I am very grateful to A. Uchman and to an anonymous reviewer for useful and detailed suggestions for improving the manuscript, and to S.T. Hasiotis, coeditor of PALAIOS, for his useful suggestions. I am also grateful to M. Rebesco and D. Stow for editorial and linguistic assistance. This research was supported by research project RB 2006–2007 of the Earth Science Department of the University of Perugia.

REFERENCES

KSSZKIERWZ, M., 1954, Uziarnienie frakcjonalne i laminowane we fliszu karpakickim (Graded and laminated bedding in the Carpathian Flysch): Rocznik Polskiego To- warzystwa Geologicznego, v. 22, p. 399–471.

ACCEPTED MAY 13, 2008