

Nel Cuore della Materia

Egle Tomasi-Gustafsson CEA, IRFU, DPhN and Université Paris-Saclay France

Università degli Studi di Perugia

A.D. 1308

UNIVERSITÀ DEGLI STUDI DI PERUGIA

19 Ottobre 2023

Egle Tomasi-Gustafsson

Il protone

Il protone è l'elemento più diffuso nella materia visibile ...

...Ма...

....le sue proprietà fondamentali come

- Massa
- Spin
- Raggio

Riservano ancora dei misteri

Cez

Ordini di grandezza

$\dots 0.000001 \text{ m} = 1/1000000 \quad 0.001 \text{ m} = 1/1000 \quad 1 \text{ m}$

10⁻¹⁵ m 10⁻¹² m 10⁻⁹ m 10⁻⁶ m 10⁻³ m 1 m

La MASSA del protone

- creata dinamicamente dall'interazione forte

Cez

Egle Tomasi-Gustafsson

Quarks, Leptoni e Interazioni Fondamentali

Cez

Il RAGGIO del protone

cea

Lo SPIN del protone

Cea

Se il protone fosse un frutto...

Perugia, 19-X-2023

Cea

Se il protone fosse un frutto...

VDM : vector meson dominance

Instantons: Mostly Vacuum

Cez

Due scoperte recenti

Diffusione elastica elettrone-protone

Annichilazione elettrone-positrone

- Quadro globale
- Dati e modelli

22

Egle Tomasi-Gustafsson

Fisica delle Particelle, Nucleare, Adronica

Acceleratori di particelle: LHC

Protone-protone 100 m di profondità 27 km circonferenza 9593 magneti 1 miliardo di collisioni/secondo 11245 giri/secondo

Rivelatori: camere a bolle, a nebbia, emulsioni

Contiene un liquido al punto di ebollizione

Rivelatori ottimi ma lenti

Le particelle cariche interagiscono, lasciano energia, ionizzano il liquido, appaiono delle bolle: tracce osservabili!

Rivelatori

Ad alta energia la molteplicità delle particelle è troppo grande: rivelatori elettronici

ATLAS CMS STAR

Cea

Egle Tomasi-Gustafsson

Rivelatori di Particelle

Sezione di un rivelatore, con indicate tracce di particelle

Cez

Egle Tomasi-Gustafsson

Reazioni elementari

Reazioni elementari

$$\begin{array}{l} e^{\bar{}}(k_1) + p(p_1) \longrightarrow e^{\bar{}}(k_2) + p(p_2) & Diffusione \\ \\ p(p_1) + \overline{p}(-p_2) \longrightarrow e^{\bar{}}(k_2) + e^{+}(-k_1) \\ e^{\bar{}}(k_1) + e^{+}(-k_2) \longrightarrow \overline{p}(-p_1) + p(p_2) \end{array} \begin{array}{l} Annichilazione \\ \\ L' \text{ interazione avviene tramite lo scambio di} \\ \\ un fotone virtuale di 'massa' Q^2 \end{array}$$

 $\begin{array}{l} -Q^2 = t = (k_1 - k_2)^2 : \textit{t-channel} \\ Q^2 = s = (k_1 + p_1)^2 : \textit{s-channel} \end{array}$

Canali 'incrociati':

- Descritti dalla stessa ampiezza f(s,t)
- Una particella diventa antiparticella
- I quadrimomenti cambiano segno
- Esplorano diverse regioni cinematiche

e

e

p

Distribuzione di carica elettrica e magnetica

ep-elastic scattering : Rosenbluth separation

0.0150 $Q^2 = 2.64 \text{ GeV}^2$ 0.0145 $\varepsilon = \left(1 + 2(1 + \tau) \tan^2 \left(\frac{\theta_e}{2}\right)\right)^2, \tau = \frac{Q^2}{4M^2}$ 0.0140 $Q^2 = 3.20 \text{ GeV}^2$ $\sigma_{D} = \varepsilon G_{T}^{2} + \tau G$ 0.0050 $Q^2\!\!=\!\!4.10~GeV^2$ Linearity of the reduced cross section \mathcal{E} 0.0046 \rightarrow tan² θ_{e} dependence 0.0 0.30.50.8 1.0 e \rightarrow Holds for 1γ exchange only PRL 94, 142301 (2005)

1950

ep-elastic scattering : The Akhiezer-Rekalo method

The polarization induces a term in the cross section proportional to $G_E G_M$ **Polarized beam and target or polarized beam and recoil proton polarization**

The polarization method (exp: 2000)

Transferred polarization is:

D

0

C. Perdrisat, V. Punjabi, et al., JLab-GEp collaboration

$$P_n = 0$$

$$\pm h P_t = \mp h 2\sqrt{\tau(1+\tau)} G_E^p G_M^p \tan\left(\frac{\theta_e}{2}\right) / I_0$$

$$\pm h P_l = \pm h (E_e + E_{e'}) (G_M^p)^2 \sqrt{\tau(1+\tau)} \tan^2\left(\frac{\theta_e}{2}\right) / M / I_0$$

MAGNETIC DISCUSSION

man Samuel

$$\implies \frac{G_E^p}{G_M^p} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

 $I_0 = (G^p_E(Q^2))^2 + \frac{\tau}{\epsilon}(G^p_M(Q^2))^2$

The simultaneous measurement of *P_t* and *P₁* reduces the systematic errors

Where, h = |h| is the beam helicity

The Akhiezer-Rekalo recoil proton polarization method (1967) GEp Experiments (>2000)

Jlab-GEp collaboration (>2000)

- 1) "standard" dipole function for the nucleon magnetic FFs GMp and GMn
- 2) linear deviation from the dipole function for the electric proton FF GEp
- 3) QCD scaling not reached
- 3) Zero crossing of Gep?
- 4) contradiction between polarized and unpolarized measurements

A.J.R. Puckett et al, Phys. Rev. C96, 055203 (2017).

Cez

Distribuzione di carica elettrica e magnetica

Time-like observables: $|G_E|^2$ and $|G_M|^2$.

-The cross section for
$$\overline{p} + p \rightarrow e^+ + e^-$$
 (1 γ -exchange):

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |G_M|^2 (1 + \cos^2\theta) + |G_E|^2 \sin^2\theta\right]$$
 θ : angle between e^- and \overline{p} in cms.

A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto, Il Nuovo Cimento XXIV, 170 (1962) B. Bilenkii, C. Giunti, V. Wataghin, Z. Phys. C 59, 475 (1993) G. Gakh, E.T-G., Nucl. Phys. A761,120 (2005)

As in SL region:

- Dependence on q² contained in FFs
- Even dependence on $\cos^2\theta$ (1 γ exchange)
- No dependence on sign of FFs
- Enhancement of the magnetic term

but TL form factors are complex!

Egle Tomasi-Gustafsson

Oscillazioni smorzate e regolari in p_{Lab}

La variable interessante è p_{Lab} associata al moto relativo delle particelle nello stato finale

A. Bianconi, E. T-G. Phys. Rev. Lett. 114,232301 (2015)

Confirmation of regular oscillations

$$F_p^{\text{fit}}(s) = F_{3p}(s) + F_{\text{osc}}(p(s))$$

$$F_{3p}(s) = \frac{F_0}{\left(1 + \frac{s}{m_a^2}\right) \left(1 - \frac{s}{m_0^2}\right)^2},$$

$$F_{osc}(p(s)) = Ae^{-Bp} \cos(Cp + D).$$

$$s = 2m_p \left(m_p + \sqrt{p^2 + m_p^2} \right) ,$$

$$p = \sqrt{s \left(\frac{s}{4m_p^2} - 1 \right)} .$$

E.T.-G., A. Bianconi, S. Pacetti, Phys.Rev.C 103 (2021) 3, 035203

cea

Egle Tomasi-Gustafsson

Time- and Space-Like Form Factors Unified definition

$$F(q^2) = \int_{\mathcal{D}} d^4 x e^{iq_\mu x^\mu} \rho(x), \ q_\mu x^\mu = q_0 t - \vec{q} \cdot \vec{x}$$

TL_

0000

e V

time -

 $\rho(x) = \rho(\vec{x}, t)$ space-time distribution of the electric charge in the space-time volume \mathcal{D} .

SL photon 'sees' a charge density TL photon can not test a space distribution but sees the time evolution from the annihilation point to the formed hadron

How to connect and understand the amplitudes?

Quarks, Leptoni e Interazioni Fondamentali

Cez

Il nucleone (protone e neutrone)

3 quarks di valenza e un 'mare' neutro di coppie $q\overline{q}$

Stato antisimmetrico di quarks con 'colore'

 $|p\rangle \sim \epsilon_{ijk}|u^i u^j d^k\rangle$ $|n > \sim \epsilon_{ijk} | u^i d^j d^k >$

Immaginiamo che nel centro ci sia una regione elettricamente neutra : condensato di clusters di gluoni con forte campo cromomagnetico orientati casualmente Il campo elettrico risulta schermato, come in un plasma. Si puo dimostrare che il fattore di forma elettrico è soppresso di un fattore q² rispetto al magnetico.

E.A. Kuraev, E. T-G, A. Dbeyssi, Phys.Lett. B712 (2012) 240

SL- il righello piu preciso

Soppressione addizionale per la carica : screening della carica come in un plasma:

$$G_E(Q^2) = \frac{G_M(Q^2)}{\mu} \left(1 + Q^2/q_1^2\right)^{-1}$$

Zero crossing?Predizione: NOII fotone 'vede' la regioneneutra, schermata $G_{Ep} \approx 0$ for r < 0.06 fm

 $r \,[\text{fm}] = \lambda = \hbar c / \sqrt{Q^2} = 0.197 \,[\text{GeV fm}] / \sqrt{Q^2} [\text{GeV}],$

E. T-G., S. Pacetti , Phys. Rev. C 106 (2022) 3, 035203

Regione Tempo

Stato antisimmetrico di quark di colore

Il colore sparisce: Principio di Pauli

Lo stato di vuoto trasferisce tutta l'energia in uno stato di materia che consiste almeno di 6 quark di valenza, senza massa, un set di gluoni un mare di qq, con q₀>2M_p, dimensione $\hbar/(2M_p) \sim 0.1$ fm.

- I quarks uu (dd) sono spinti fuori dalla regione interna
- Il terzo quark u (p) o d (n) è attratto da uno dei quark identici, di segno opposto e forma un di-quark compatto : il destino del sistema è deciso dal bilancio della forza di attrazione e la forza stocastica del campo gluonico
- Il colore è restaurato, l'adrone puntiforme si espande, e 'si raffredda': i quark assorbono gluoni e diventano quark costituenti con massa, momento magnetico, dimensione...

Correlazione np (TL) : 3 regimi

Punti allo stesso P_L

Altrimenti i valori del protone sono calcolati dal fit a 6 parametri

- 1) Si applica pQCD
- 2) Fase di-quark: la carica si riorganizza
- 3) L'adrone è formato

E.A. Kuraev, A. Dbeyssi, E. T-G. Phys. Lett. 712, 240 (2012) E. T-G., S. Pacetti , Phys. Rev. C 106 (2022) 3, 035203

Cez

MQ ... trasgressiva

Leggi di conservazione: energia, momento angolare, carica, parità....

Conservazione dell'energia:

ma...in un tempo abbastanza corto si possono creare 'particelle virtuali' di qualsiasi massa

Fluttuazioni del vuoto: Particelle-antiparticelle.... Creazione dell'Universo... ...perché solo materia?

Correlazione np Λ

Le coppie di quark sono create dalle fluttuazioni del vuoto: tutti i quark sono equi-probabili, ma-per il principio di Heisenberg- II tempo associato dipende dall'energia (la massa).

Cez

TL- l'orologio piu preciso

10^{-23 :} tempo impiegato dalla luce per attraversare il protone

La fase di-quark domina a $t \sim 0.02-0.03$ [10⁻²³ s]

E. T-G., S. Pacetti , Phys. Rev. C 106 (2022) 3, 035203

Cea

Conclusione

Due scoperte recenti, risultati, predizioni

ഫ്

Diffusione elastica ep

Annichilazione e+e-

p [GeV]

- Vuoto Q. all'interno
- La struttura del protone è 'dinamica' : l'immagine cambia secondo la distanza
- coesistenza di stati
- accesso alla quarta dimensione: il tempo

Cez

Grazie per l'Attenzione! egle.tomasi@cea.fr

Electromagnetic Interaction

The electron vertex is known, γ_{μ}

The interaction is carried by a virtual photon of 4-mom q^2

The proton vertex is parametrized in terms of FFs: Pauli and Dirac F₁,F₂

$$\Gamma_{\mu} = \gamma_{\mu} F_{l}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2M} F_{2}(q^{2})$$

 $q^2 = -4E_1 E_2 \sin^2 \theta/2$

or in terms of Sachs FFs: $G_E = F_1 + \tau F_2$, $G_M = F_1 + F_2$, $\tau = q^2/4M^2$ $G_E(0) = 1(e)$ $G_M(0) = \mu_N$

What about high order radiative corrections?

Dipole Approximation & pQCD

Dimensional scaling

- $-F_{n}(Q^{2})=C_{n}[1/(1+Q^{2}/m_{n})^{n-1}],$
 - $m_n = n\beta^2$, <quark momentum squared>
 - n is the number of constituent quarks
- Setting m_{π} =(0.471±.010) GeV² (fitting pion data)
 - pion: F_{π} (Q²)= C_{π} / (1+Q²/0.471 GeV²)¹,
 - nucleon: F_N (Q²)= C_N /(1+Q²/0.71 GeV²)²
 - deuteron: F_d (Q²)= C_d /(1+Q²/1.41GeV²)⁵ V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze (1973), Brodsky and Farrar

V. A. Matveev, R. M. Muradian, and A. N. Tavkhelidze (1973), Brodsky and Farrar (1973), Politzer (1974), Chernyak & Zhitnisky (1984), Efremov & Radyuskin (1980)...

Dipole Approximation & charge density

$G_D = (1+Q^2 / 0.71 \text{ GeV}^2)^{-2}$

Classical approach

 Nucleon FF (in non relativistic approximation or in the <u>Breit</u> <u>system</u>) are Fourier transform of the charge or magnetic distribution.

$$P_{1}(\mathbf{q}_{B} / 2)$$

$$P_{2}(\mathbf{q}_{B} / 2)$$

$$P_{2}(\mathbf{q}_{B} / 2)$$

$$Breit system$$

• The dipole approximation corresponds to an exponential density distribution.

$$-\rho = \rho_0 \exp(-r/r_0),$$

 $-r_0^2 = (0.24 \text{ fm})^2, < r^2 > \sim (0.81 \text{ fm})^2 \leftrightarrow m_D^2 = 0.71 \text{ GeV}^2$

The Time-like Region

Cea

Predictions for SL and TL

Quark counting rules apply to the vector part of the potential

$$G_M^{(p,n)}(Q^2) = \mu G_E(Q^2);$$

$$G_E^{(p,n)}(Q^2) = G_D(Q^2) = \left[1 + Q^2/(0.71 \,\mathrm{GeV}^2)\right]^{-2}$$

The neutral plasma acts on the distribution of the electric charge (not magnetic).

Additional suppression due to the neutral plasma

$$G_E(Q^2) = \frac{G_M(Q^2)}{\mu} \left(1 + Q^2/q_1^2\right)^{-1}$$

Similar behavior in SL and TL regions

Hadron Electromagnetic Form factors

The Nobel Prize in Physics 1961

"for his pioneering studies of electron scattering in atomic nuclei and for his thereby achieved discoveries concerning the stucture of the nucleons"

Robert Hofstadter 1/2 of the prize USA

Stanford University Stanford, CA, USA Characterize the internal structure of a particle (\neq point-like) Elastic form factors contain information on the hadron ground state. In a P- and T-invariant theory, the EM structure of a particle of spin S is defined by 2S+1 form factors. Neutron and proton form factors are different (G_{F}, G_{M}) Playground for theory and experiment at low q^2 probe the size of the nucleus, at high q² test QCD scaling Assumption: dipole for GEp, GMp and GMn while GEn=0.

Fourier Transform

- Rescattering processes
- Large imaginary part
- Related to the time evolution of the charge density? (E.A. Kuraev, E. T.-G., A. Dbeyssi, PLB712 (2012) 240)
- Consequences for the SL region?
- Data from BESIII, expected from PANDA

Cez

Cross section from $e^+e^- \rightarrow p\overline{p}(\gamma)$

cea

Egle Tomasi-Gustafsson

Radiative return (ISR)

$$e^+ + e^- \rightarrow p + \overline{p} + \gamma$$

$$\frac{d\sigma(e^+e^- \to p\bar{p}\gamma)}{dm \, d\cos\theta} = \frac{2m}{s} W(s, x, \theta) \sigma(e^+e^- \to p\bar{p})(m), \quad x = \frac{2E_\gamma}{\sqrt{s}} = 1 - \frac{m^2}{s},$$
$$W(s, x, \theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad \theta \gg \frac{m_e}{\sqrt{s}}.$$

B. Aubert (BABAR Collaboration) Phys Rev. D73, 012005 (2006)

VMD: lachello, Jakson and Landé (1973)

Isoscalar and isovector FFs

$$\begin{split} F_1^s(Q^2) &= \frac{g(Q^2)}{2} \left[(1 - \beta_\omega - \beta_\phi) + \beta_\omega \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \beta_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_1^v(Q^2) &= \frac{g(Q^2)}{2} \left[(1 - \beta_\rho) + \beta_\rho \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi / \pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2) / \mu_\pi} \right], \\ F_2^s(Q^2) &= \frac{g(Q^2)}{2} \left[(\mu_p + \mu_n - 1 - \alpha_\phi) \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \alpha_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_2^v(Q^2) &= \frac{g(Q^2)}{2} \left[(\mu_p - \mu_n - 1) \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi / \pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2) / \mu_\pi} \right], \end{split}$$

Intrinsic factor

Meson Cloud

Few # parameters, with physical meaning Naturally arising TL imaginary part

 $\overline{(1+\gamma e^{i\theta}O^2)^2}$

$$2F_{i}^{p} = F_{i}^{s} + F_{i}^{v},$$

$$2F_{i}^{n} = F_{i}^{s} - F_{i}^{v},$$

$$2\int_{2}^{2} \sqrt{Q^{2} + 4\mu_{\pi}^{2}} \sqrt{(Q^{2} + 4\mu_{\pi}^{2})} + \sqrt{Q^{2}}$$

$$\alpha(Q^2) = \frac{2}{\pi} \sqrt{\frac{Q^2 + 4\mu_\pi}{Q^2}} ln \left| \frac{\sqrt{(Q^2 + 4\mu_\pi) + \sqrt{q}}}{2\mu_\pi} \right|$$

