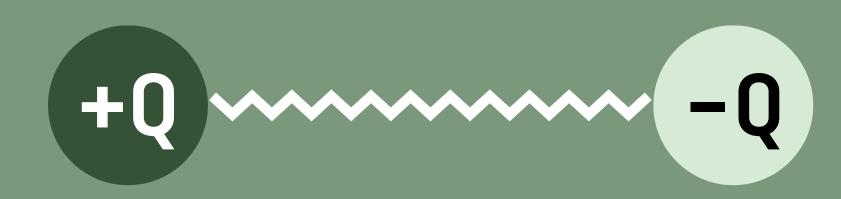
# Analysis of the confinement string in (2+1)d Quantum Electrodynamics with quantum computing

Arianna Crippa, Karl Jansen & Enrico Rinaldi



Perugia 8. May 2025





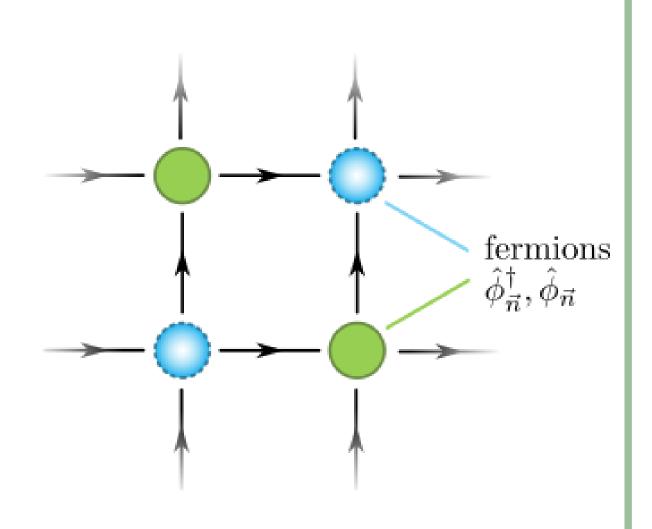




# Contents

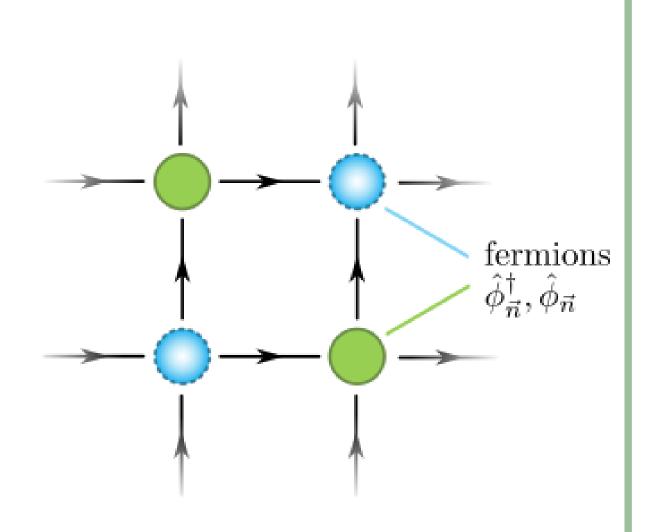
- 2+1D QED on the lattice
- Quantum computing methods
- Electric flux configurations of the static potential
  - Static potential
  - Quantum hardwares and circuits
  - Results
- Conclusions

# 2+1D QED on the lattice



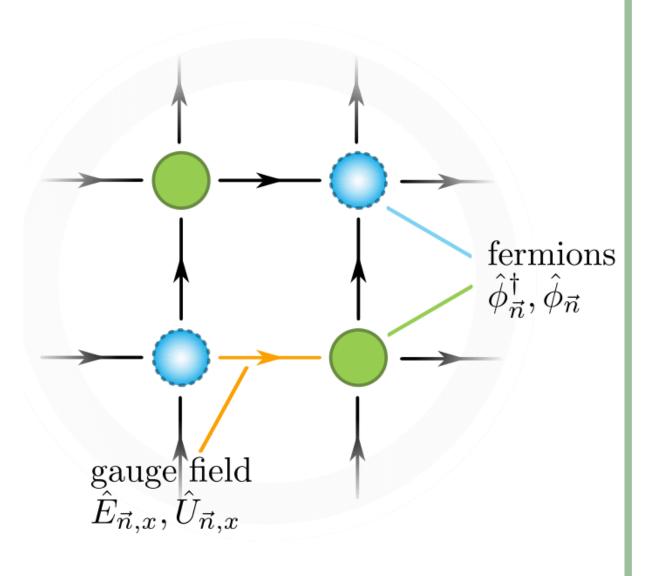
#### FERMIONIC HAMILTONIAN

$$egin{align} \hat{H}_{m} &= m \sum_{ec{n}} (-1)^{n_{x}+n_{y}} \hat{\phi}_{ec{n}}^{\dagger} \hat{\phi}_{ec{n}} \ & \ \hat{H}_{kin} = rac{i}{2} \sum_{ec{n}} (\phi_{ec{n}}^{\dagger} \hat{U}_{ec{n},x} \phi_{ec{n}+x} - h.\,c.) \ & -rac{(-1)^{n_{x}+n_{y}}}{2} \sum_{ec{n}} (\phi_{ec{n}}^{\dagger} \hat{U}_{ec{n},y} \phi_{ec{n}+y}^{\dagger} + h.\,c.) \ \end{array}$$



#### FERMIONIC HAMILTONIAN

$$\hat{H}_m = m \sum_{ec{n}} (-1)^{n_x+n_y} \hat{\phi}_{ec{n}}^\dagger \hat{\phi}_{ec{n}}$$
  $\hat{H}_{kin} = rac{i}{2} \sum_{ec{n}} (\phi_{ec{n}}^\dagger \hat{U}_{ec{n},x} \phi_{ec{n}+x} - h.c.)$   $-rac{(-1)^{n_x+n_y}}{2} \sum_{ec{n}} (\phi_{ec{n}}^\dagger \hat{U}_{ec{n},y} \phi_{ec{n}+y} + h.c.)$  EVEN ODD EVEN ODD



#### FERMIONIC HAMILTONIAN

$$\hat{H}_m = m \sum_{ec{n}} (-1)^{n_x + n_y} \hat{\phi}_{ec{n}}^\dagger \hat{\phi}_{ec{n}}$$

$$\hat{H}_{kin} = rac{i}{2} \sum_{ec{n}} (\phi^\dagger_{ec{n}} \hat{U}_{ec{n},x} \phi_{ec{n}+x} - h.\,c.\,)$$

$$-rac{(-1)^{n_x+n_y}}{2} \sum_{ec{n}} (\phi^\dagger_{ec{n}} \hat{U}_{ec{n},y} \phi_{ec{n}+y} + h.\,c.\,)$$





**EVEN** 

ODD

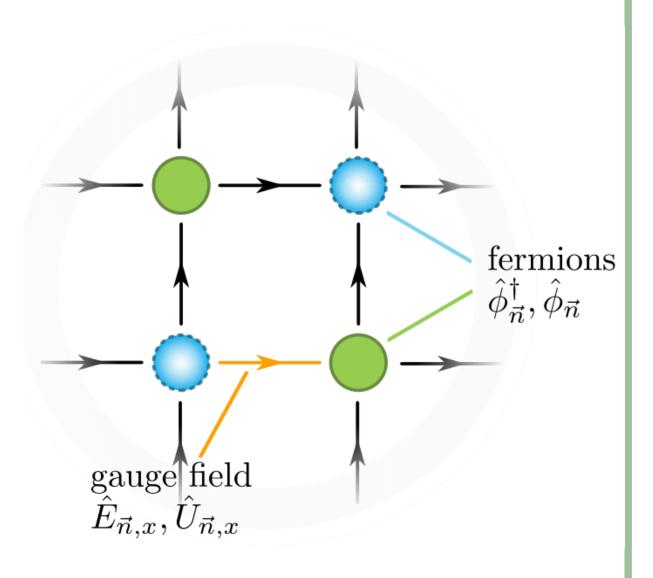
EVEN

ODD

#### GAUGE HAMILTONIAN

$$\hat{H}_E = rac{g^2}{2} \sum_{ec{n}} \left( \hat{E}_{ec{n},x}^2 + \hat{E}_{ec{n},y}^2 
ight)$$

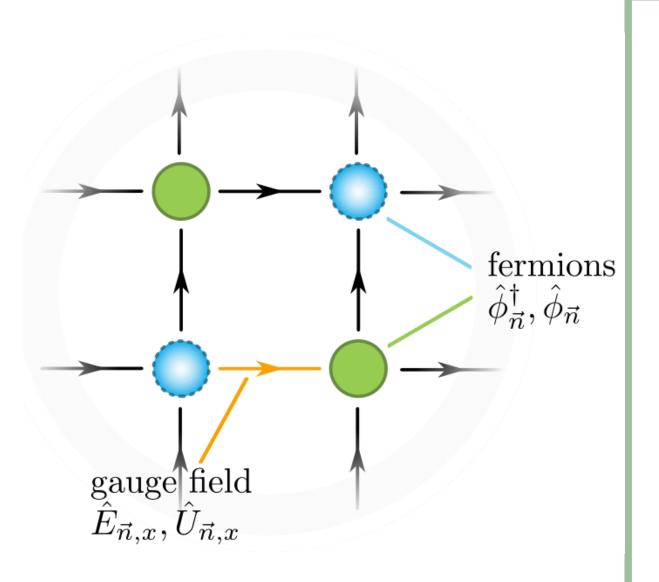
$$\hat{H}_B = -rac{1}{2g^2} \sum_{ec{n}} \left( \hat{P}_{ec{n}} + \hat{P}_{ec{n}}^\dagger 
ight).$$



#### FERMIONIC HAMILTONIAN

$$\hat{H}_m = m \sum_{ec{n}} (-1)^{n_x+n_y} \hat{\phi}^\dagger_{ec{n}} \hat{\phi}_{ec{n}}$$
  $\hat{H}_{kin} = rac{i}{2} \sum_{ec{n}} (\phi^\dagger_{ec{n}} \hat{U}_{ec{n},x} \phi_{ec{n}+x} - h.c.)$   $-rac{(-1)^{n_x+n_y}}{2} \sum_{ec{n}} (\phi^\dagger_{ec{n}} \hat{U}_{ec{n},y} \phi_{ec{n}+y} + h.c.)$  EVEN ODD EVEN ODD

#### GAUGE HAMILTONIAN



#### FERMIONIC HAMILTONIAN

$$\hat{H}_m = m \sum_{ec{n}} (-1)^{n_x+n_y} \hat{\phi}^\dagger_{ec{n}} \hat{\phi}_{ec{n}}$$
  $\hat{H}_{kin} = rac{i}{2} \sum_{ec{n}} (\phi^\dagger_{ec{n}} \hat{U}_{ec{n},x} \phi_{ec{n}+x} - h.c.)$   $-rac{(-1)^{n_x+n_y}}{2} \sum_{ec{n}} (\phi^\dagger_{ec{n}} \hat{U}_{ec{n},y} \phi_{ec{n}+y} + h.c.)$  EVEN ODD EVEN ODD

#### GAUGE HAMILTONIAN

$$\hat{H}_{E} = \frac{g^{2}}{2} \sum_{\vec{n}} \left( \hat{E}_{\vec{n},x}^{2} + \hat{E}_{\vec{n},y}^{2} \right)$$

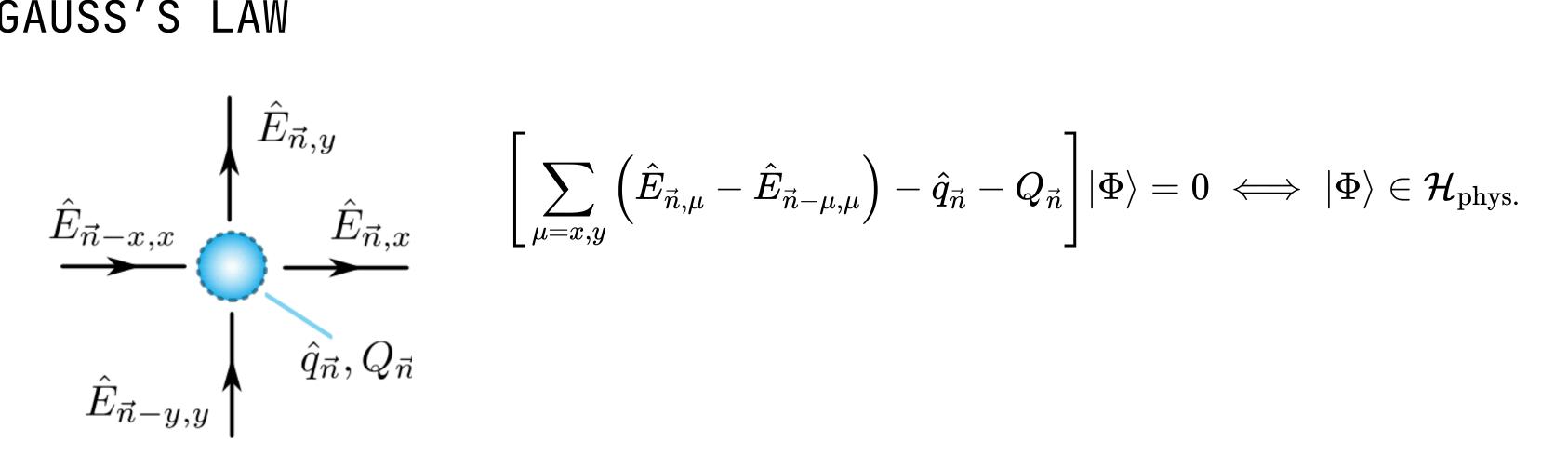
$$\hat{H}_{B} = -\frac{1}{2g^{2}} \sum_{\vec{n}} \left( \hat{P}_{\vec{n}} + \hat{P}_{\vec{n}}^{\dagger} \right)$$

$$\hat{U}_{\vec{n},y}^{\dagger} \downarrow \qquad \qquad \hat{U}_{\vec{n}+x,y}^{\dagger}$$

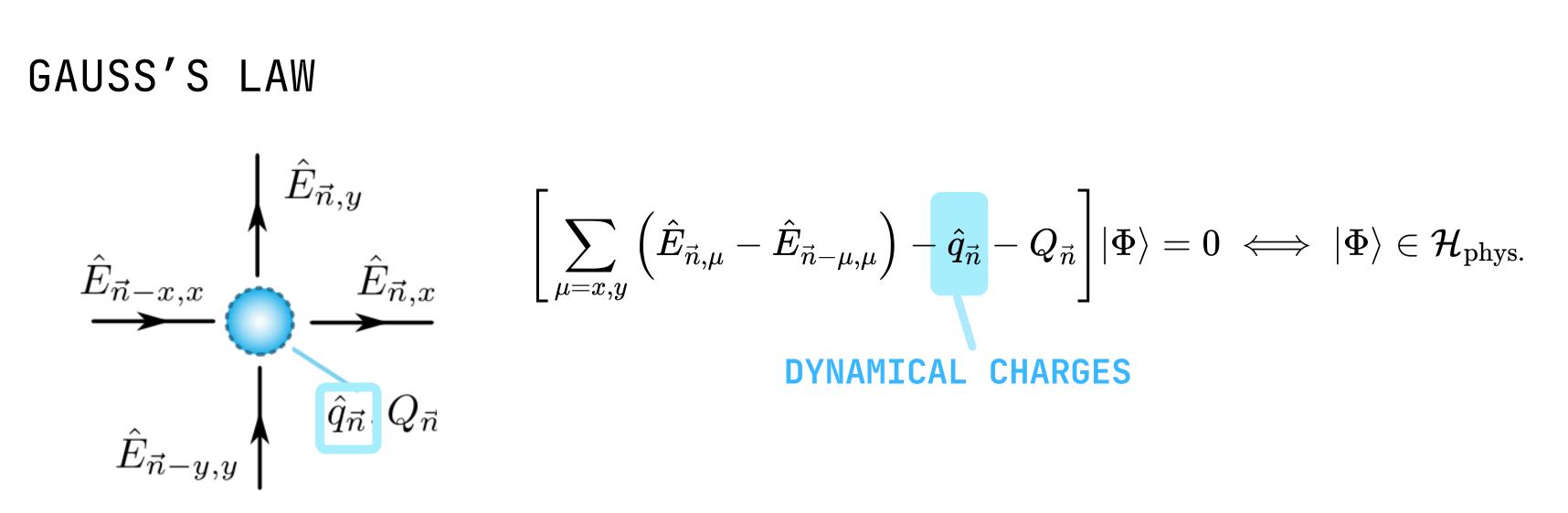
$$\hat{P}$$

For simplicity  $\alpha=1$ .

#### GAUSS'S LAW

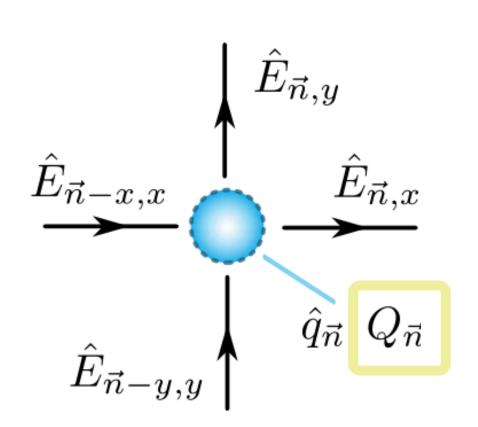


$$\left[\sum_{\mu=x,y}\left(\hat{E}_{ec{n},\mu}-\hat{E}_{ec{n}-\mu,\mu}
ight)-\hat{q}_{ec{n}}-Q_{ec{n}}
ight]|\Phi
angle=0\iff|\Phi
angle\in\mathcal{H}_{ ext{phys}}$$



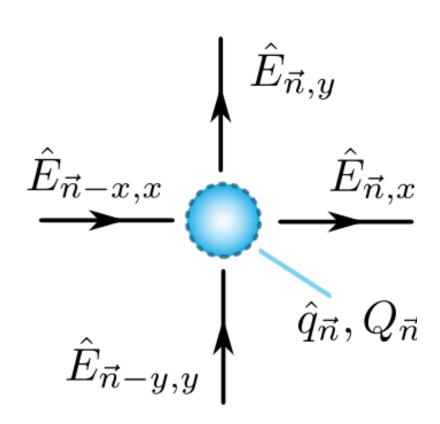
$$igg[\sum_{\mu=x,y} \left(\hat{E}_{ec{n},\mu} - \hat{E}_{ec{n}-\mu,\mu}
ight) - oldsymbol{\hat{q}}_{ec{n}} - Q_{ec{n}}igg] \ket{\Phi} = 0 \iff \ket{\Phi} \in \mathcal{H}_{ ext{phys}}$$

#### GAUSS'S LAW



$$\hat{E}_{ec{n}-x,x}$$
  $\hat{E}_{ec{n},x}$   $\hat{E}_{ec{n},x}$   $\hat{E}_{ec{n},x}$   $\hat{E}_{ec{n},x}$   $\hat{E}_{ec{n},x}$  DYNAMICAL CHARGES

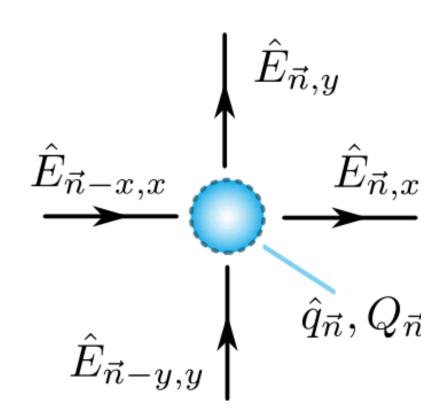
#### GAUSS'S LAW



$$\left[\sum_{\mu=x,y}\left(\hat{E}_{ec{n},\mu}-\hat{E}_{ec{n}-\mu,\mu}
ight)-\hat{q}_{ec{n}}-Q_{ec{n}}
ight]|\Phi
angle=0\iff|\Phi
angle\in\mathcal{H}_{ ext{phys.}}$$

Solve system of equations

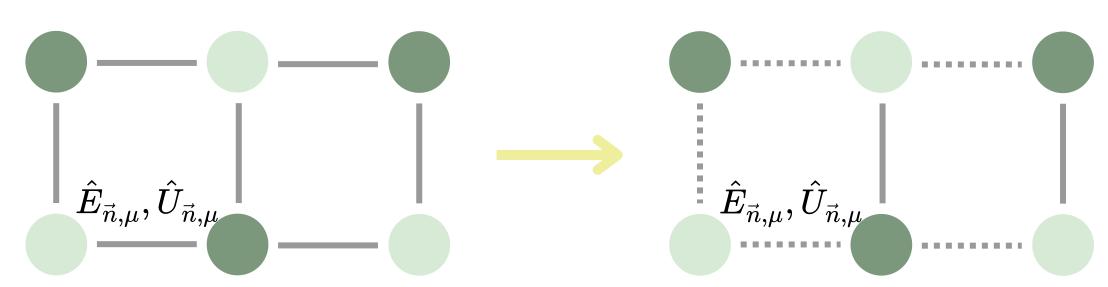
#### GAUSS'S LAW



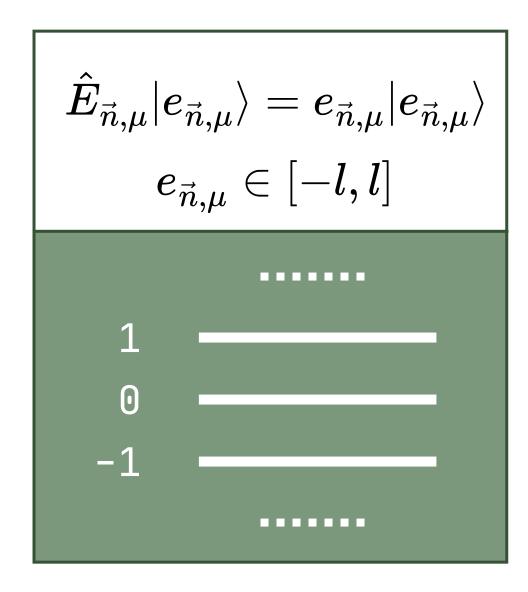
$$\left[\sum_{\mu=x,y}\left(\hat{E}_{ec{n},\mu}-\hat{E}_{ec{n}-\mu,\mu}
ight)-\hat{q}_{ec{n}}-Q_{ec{n}}
ight]|\Phi
angle=0\iff|\Phi
angle\in\mathcal{H}_{ ext{phys.}}$$

Solve system of equations

Subset of dynamical links



Compact U(1) group.



Compact U(1) group.

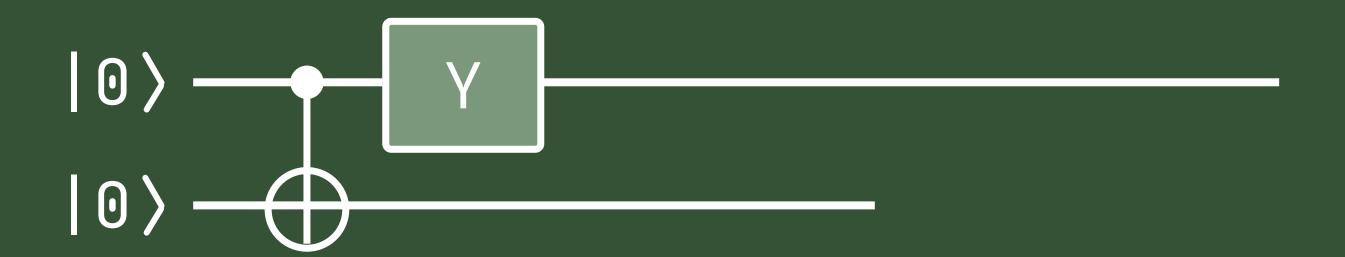
$$egin{aligned} \hat{E}_{ec{n},\mu}|e_{ec{n},\mu}
angle = e_{ec{n},\mu}|e_{ec{n},\mu}
angle \ e_{ec{n},\mu}\in[-l,l] \end{aligned} egin{aligned} \hat{U}_{ec{n},\mu}|e_{ec{n},\mu}
angle = |e_{ec{n},\mu}+1
angle \ & \dots & \dots \ 1 & \dots & \dots \ 0 & \dots & \dots \ -1 & \dots & \dots & \dots \ \end{pmatrix}$$

$$[\hat{E}_{ec{n},\mu},\hat{U}_{ec{m},
u}]=\delta_{ec{n},ec{m}}\delta_{\mu,
u}\hat{U}_{ec{m},
u}$$

Compact U(1) group.

$$[\hat{E}_{ec{n},\mu},\hat{U}_{ec{m},
u}] = \delta_{ec{n},ec{m}}\delta_{\mu,
u}\hat{U}_{ec{m},
u} \quad [\hat{E}_{ec{n},\mu},\hat{U}_{ec{m},
u}^{\dagger}] = -\delta_{ec{n},ec{m}}\delta_{\mu,
u}\hat{U}_{ec{m},
u}^{\dagger}$$

# Quantum Computing methods



Example of truncation l=1:

-1

-1

Example of truncation l=1:

-1

$$|-1
angle_{
m ph.} \mapsto |00
angle$$

$$|0\rangle_{
m ph.}\mapsto\,|01
angle$$

$$|1\rangle_{
m ph.} \mapsto |11\rangle$$

 $|10\rangle$ 

Example of truncation l=1:

1 —

$$|-1
angle_{
m ph.}\mapsto|00
angle$$
 $|0
angle-R_y(0)$ 
 $|0
angle-R_y(0)$ 

$$|0
angle_{
m ph.} \mapsto |01
angle$$

$$|1
angle_{
m ph.} \mapsto |11
angle$$

 $|10\rangle$ 

Example of truncation l=1:

$$|-1\rangle_{\mathrm{ph.}}\mapsto |00\rangle$$
 $|0\rangle-R_y(0)-|0\rangle$ 
 $|0\rangle-R_y(0)-|0\rangle$ 

$$|0
angle_{
m ph.}\mapsto\,|01
angle$$

$$|1\rangle_{
m ph.} \mapsto |11\rangle$$

$$|10\rangle$$

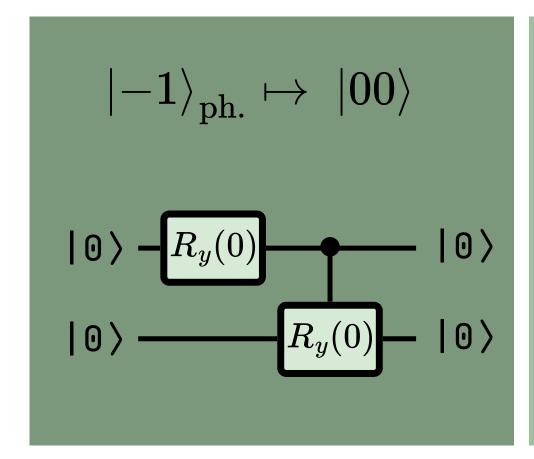
Example of truncation l=1:

$$|-1\rangle_{\mathrm{ph.}}\mapsto |00\rangle$$
 $|0\rangle-R_y(0)-|0\rangle$ 
 $|0\rangle-R_y(0)-|0\rangle$ 

$$|0\rangle_{
m ph.}\mapsto |01
angle$$
 $|0
angle R_y(\pi)$ 
 $|0
angle R_y(0)$ 

$$|1
angle_{
m ph.}\mapsto|11
angle |10
angle$$

Example of truncation l=1:

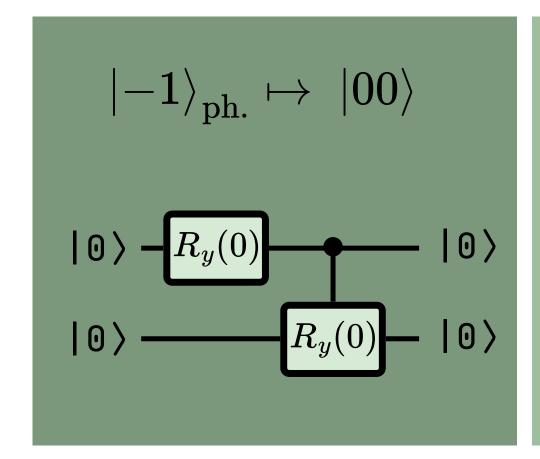


$$|0\rangle_{\mathrm{ph.}}\mapsto |01\rangle$$
 $|0\rangle - R_y(\pi) - |1\rangle$ 
 $|0\rangle - R_y(0) - |0\rangle$ 

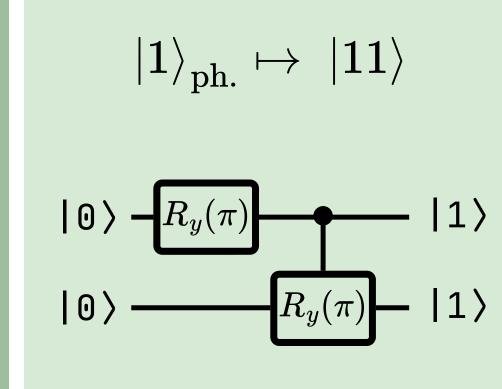
$$|1
angle_{
m ph.}\mapsto|11
angle$$

 $|10\rangle$ 

Example of truncation l=1:

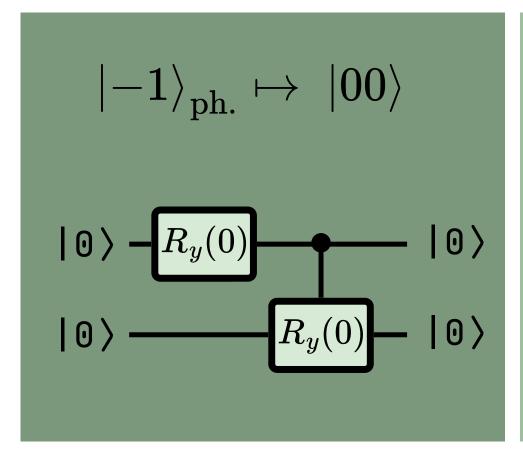


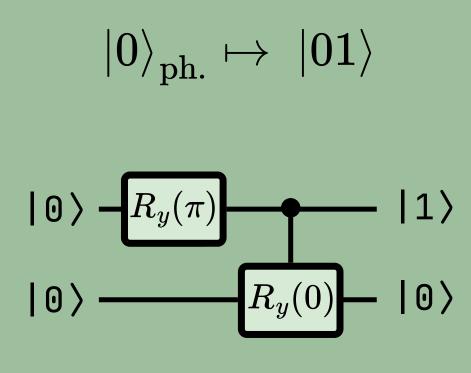
$$|0\rangle_{\mathrm{ph.}}\mapsto |01\rangle$$
 $|0\rangle - R_y(\pi) - |1\rangle$ 
 $|0\rangle - R_y(0) - |0\rangle$ 

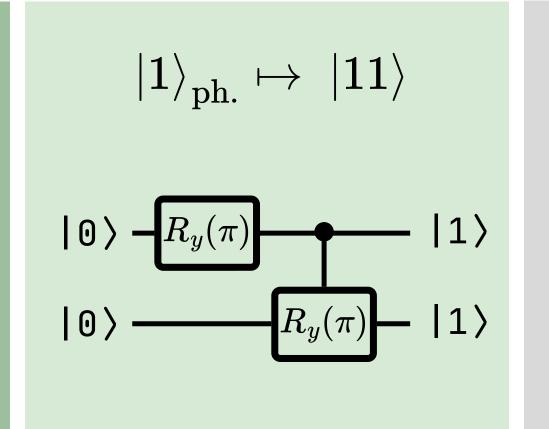


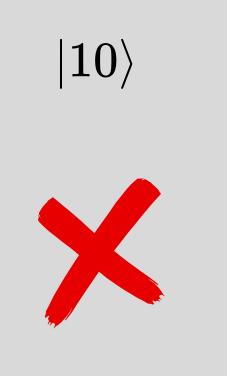
 $|10\rangle$ 

Example of truncation l=1:



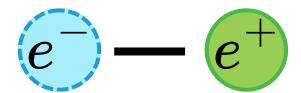






Zero total charge

EVEN ODD



 $|1\rangle$   $|0\rangle$ 



 $|0
angle \hspace{0.2in} |1
angle$ 

Zero total charge

Preserve parity

EVEN ODD



 $|1\rangle$   $|0\rangle$ 



 $|0
angle \hspace{0.5cm} |1
angle$ 

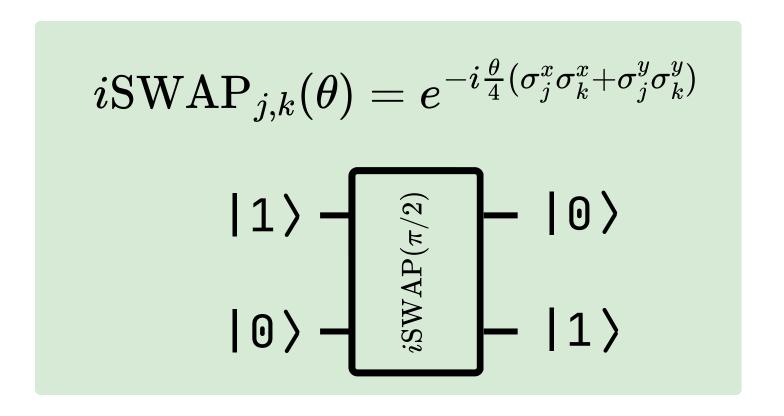
$$|0^n...1^m\rangle$$

$$n = m$$

Zero total charge

Preserve parity

EVEN ODD  $\begin{array}{c|c} e & \bullet & & & & & & & & & & & & & & \\ \hline e & & & & & & & & & & & & & \\ \hline e & & & & & & & & & & & \\ \hline |1\rangle & & & & & & & & & & \\ |1\rangle & & & & & & & & & & \\ \hline |1\rangle & & & & & & & & & \\ \hline |1\rangle & & & & & & & & \\ \hline |1\rangle & & & & & & & \\ \hline |1\rangle & & & & & & & \\ \hline |1\rangle & & & & & & \\ \hline |1\rangle & & & & & & \\ \hline |1\rangle & & & & & & \\ \hline |1\rangle & & \\ \hline |1\rangle & & & \\ \hline |1\rangle & & \\ |1\rangle & & \\ \hline |1\rangle & & \\$ 



D. Paulson, et al., PRX Quantum 2,030334 (2021)

# Variational quantum algorithm



Electric flux configurations of the static potential



# Electric flux configurations of the static potential

• Study confinement and string breaking phenomena.



# Electric flux configurations of the static potential

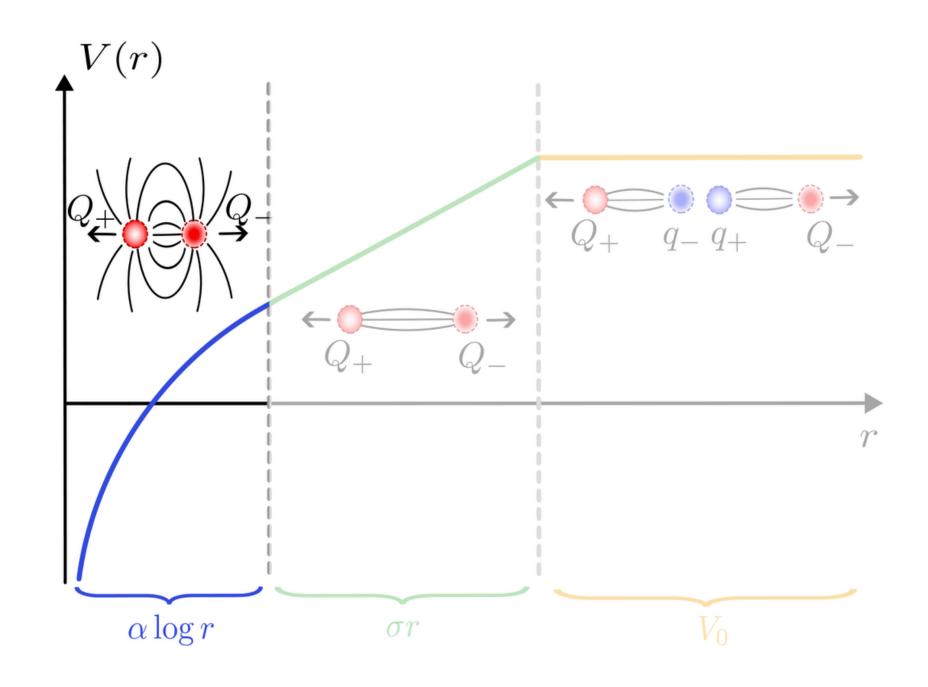
- Study confinement and string breaking phenomena.
- Direct visualization of electric fluxes & probabilities of relevant states.



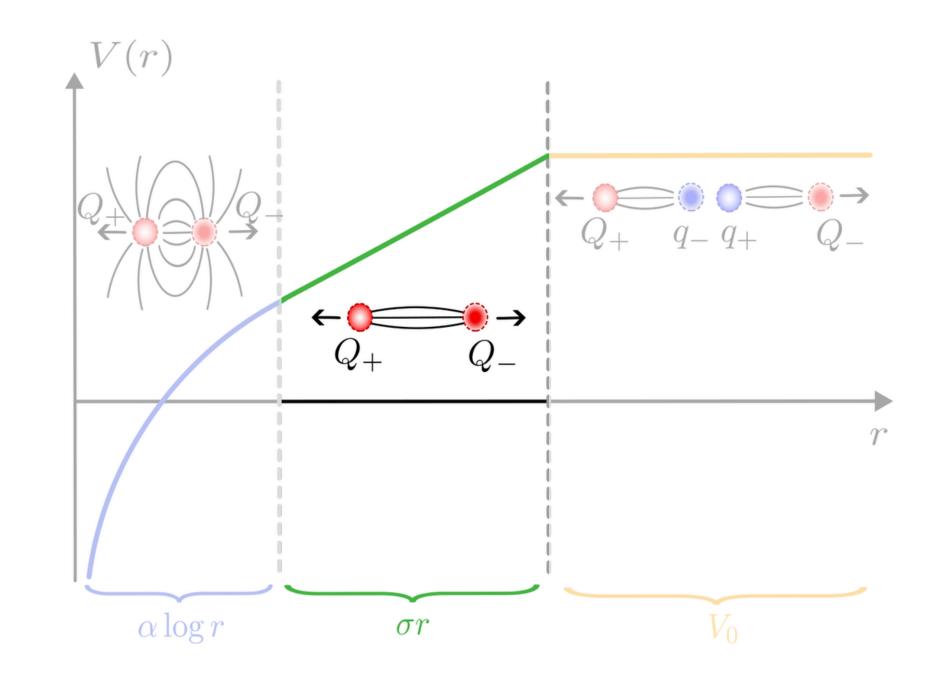
# Static potential QED 2+1D

$$V(r) = \alpha \log r + \sigma r + V_0$$

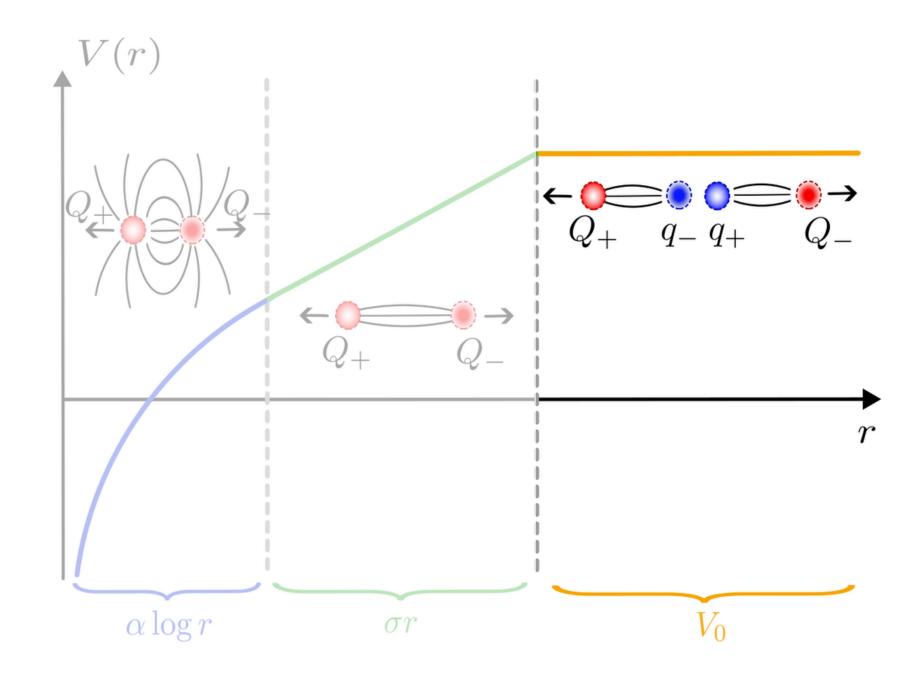
$$V(r) = \alpha \log r + \sigma r + V_0$$



$$V(r) = lpha \log r + \sigma r + V_0$$

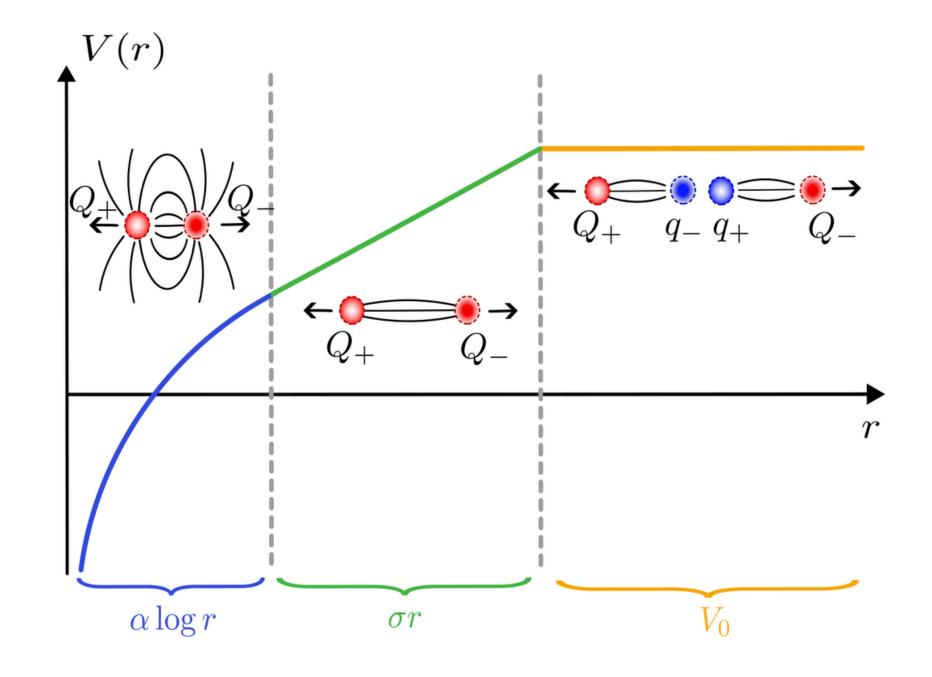


$$V(r) = lpha \log r + \sigma r + V_0$$



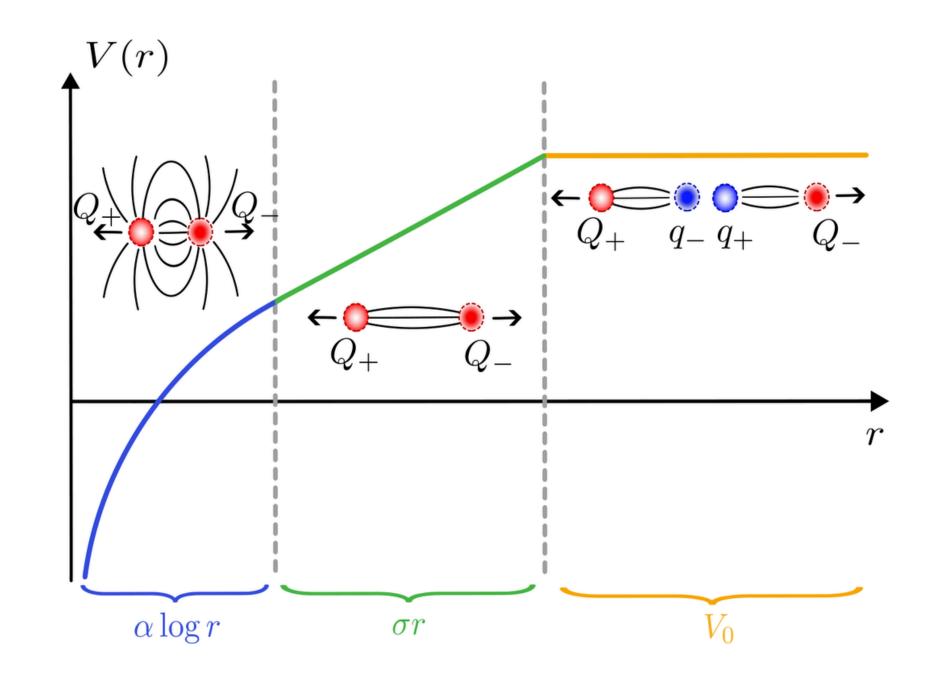
$$V(r) = lpha \log r + \sigma r + V_0$$

$$r = ar_{latt}$$



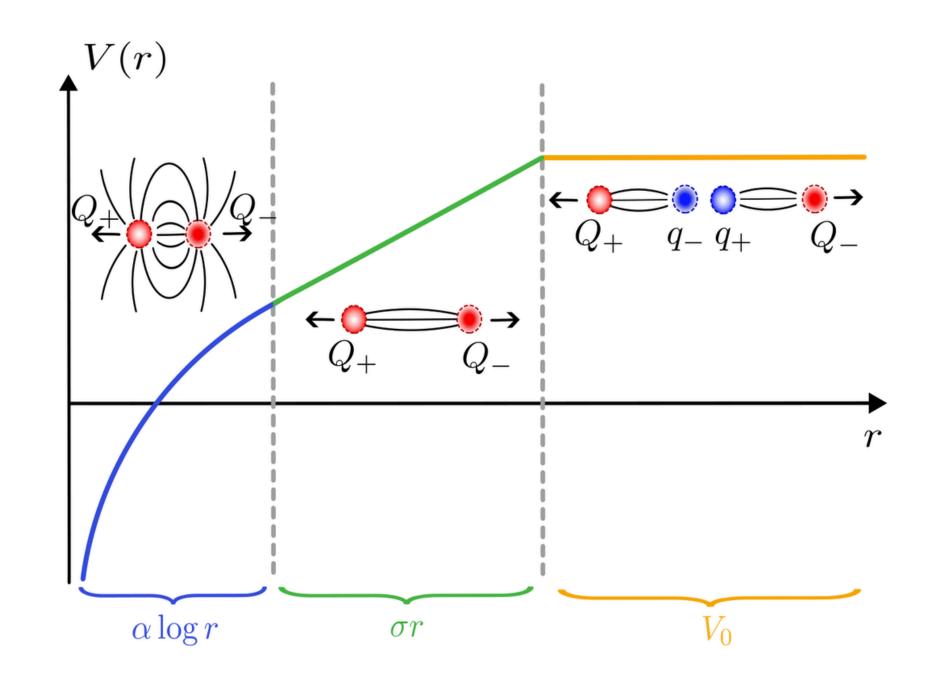
$$V(r) = lpha \log r + \sigma r + V_0$$

$$egin{aligned} r &= a r_{latt} \ &\downarrow & \ g &\mapsto g(a) \end{aligned}$$



$$V(r) = lpha \log r + \sigma r + V_0$$

$$egin{aligned} r &= oldsymbol{a} r_{latt} \ g &\mapsto g(a) \ &\downarrow \ V(r) & o V(g) \end{aligned}$$



#### Quantum Hardware

#### Quantum Hardware

Ion trap

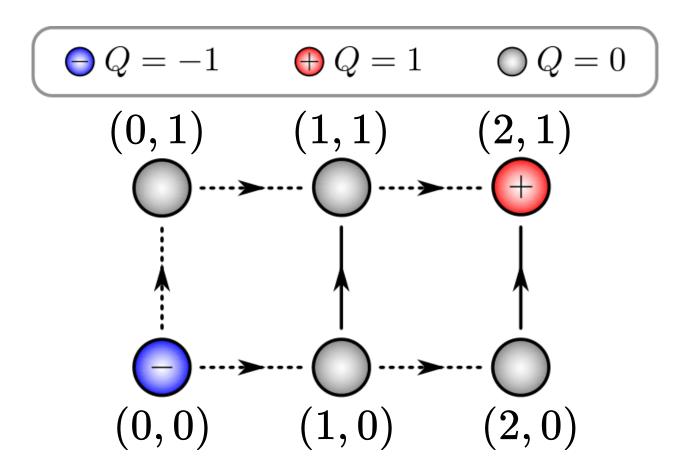
H1-1 20 qubits

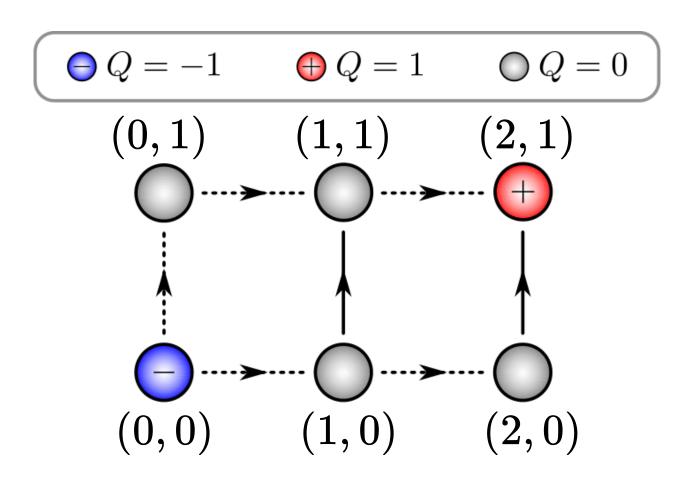


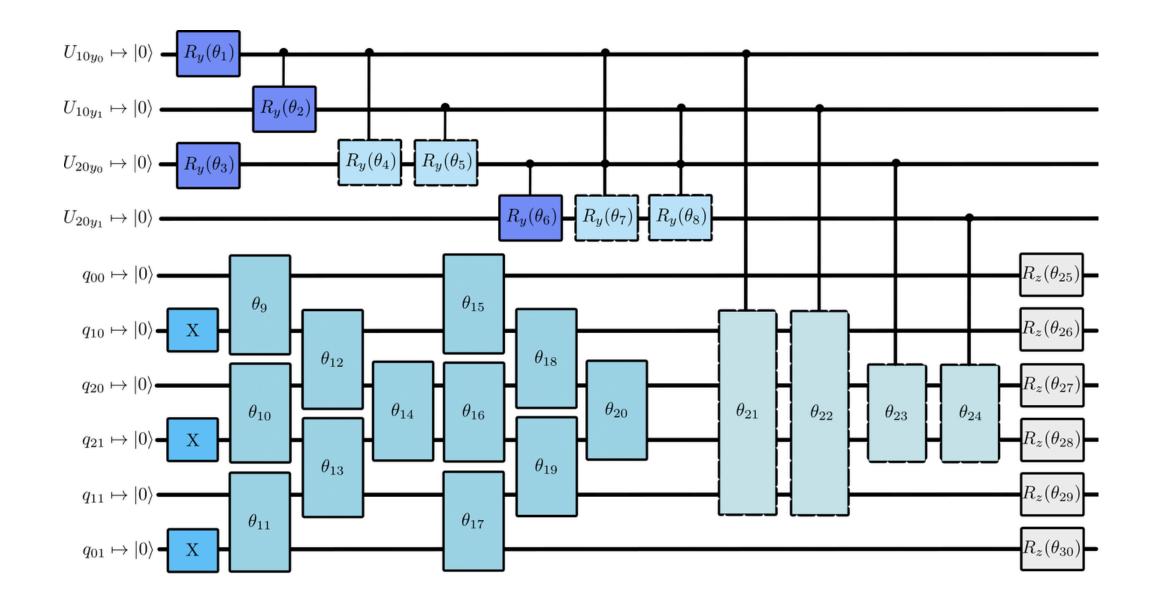
Superconducting

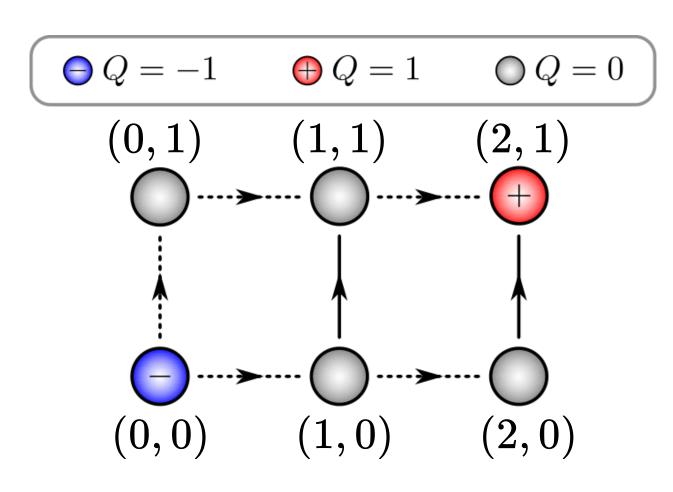
ibm\_fez 156 qubits



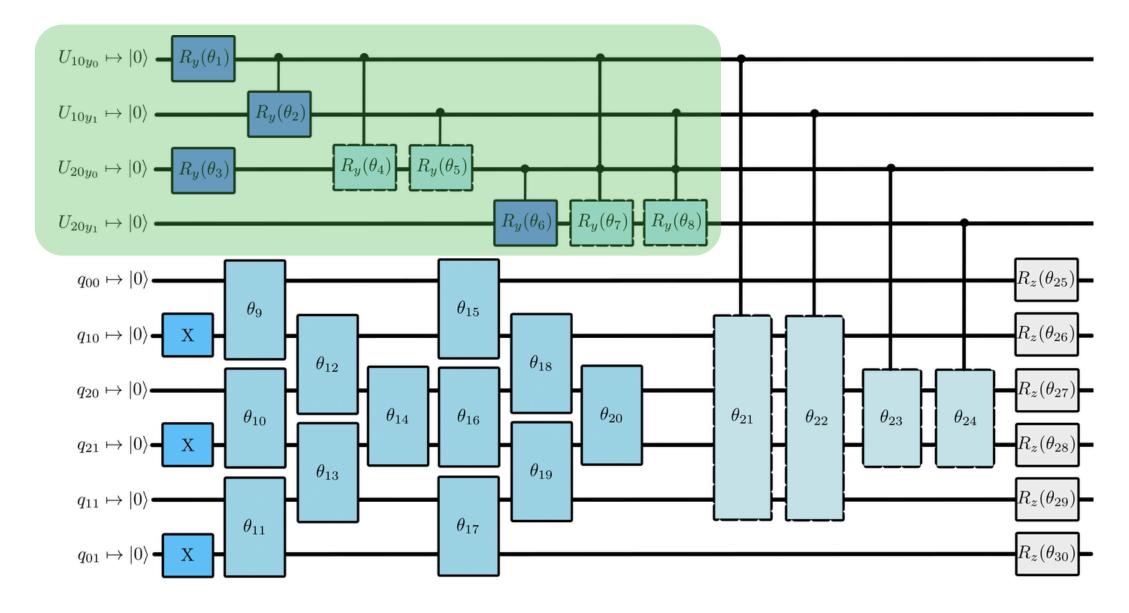


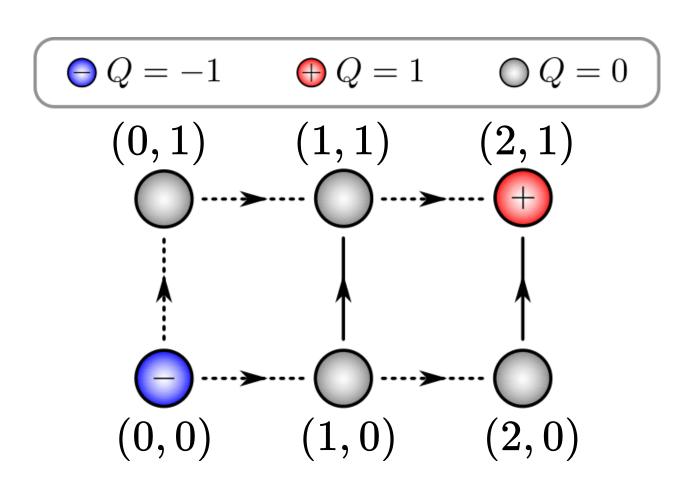




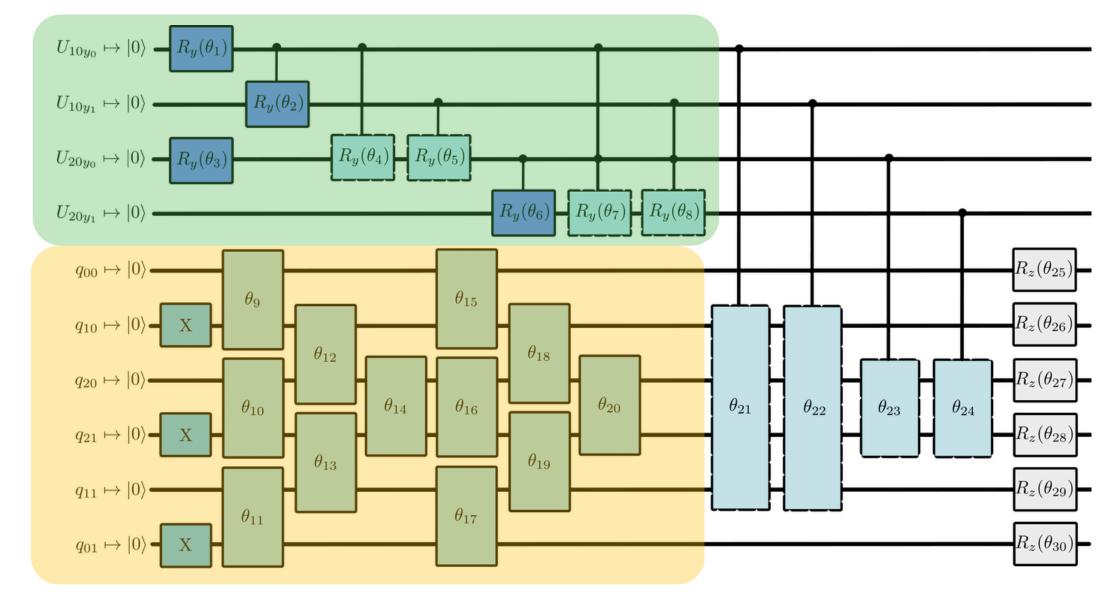


#### Gauge fields

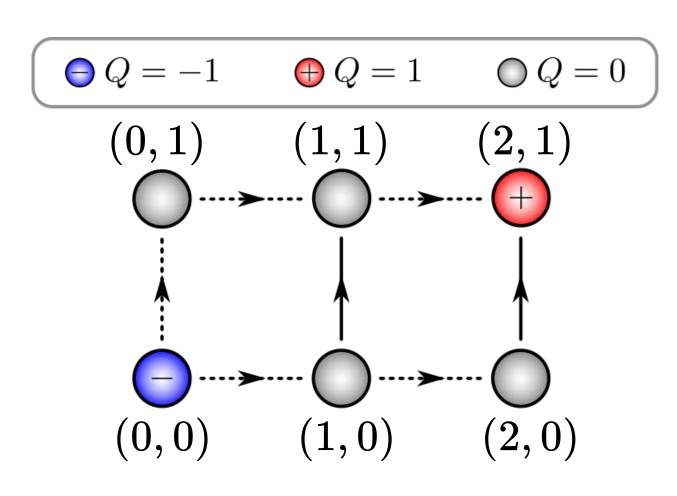


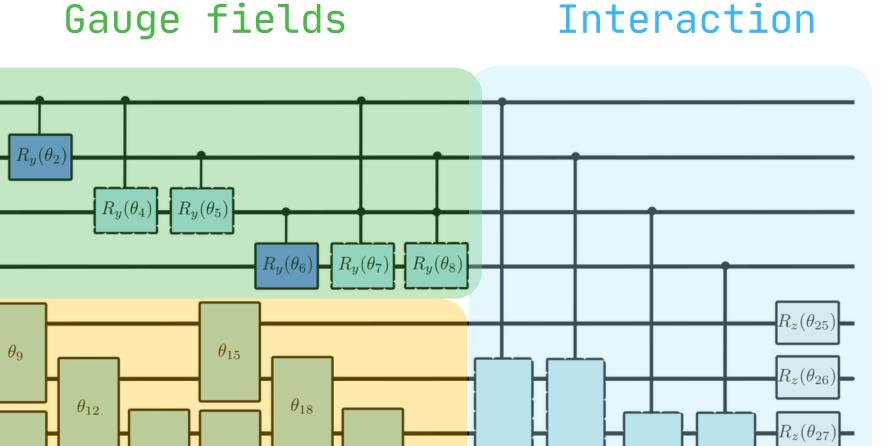


#### Gauge fields



**Fermions** 





 $R_z(\theta_{28})$ 

 $R_z(\theta_{29})$ 

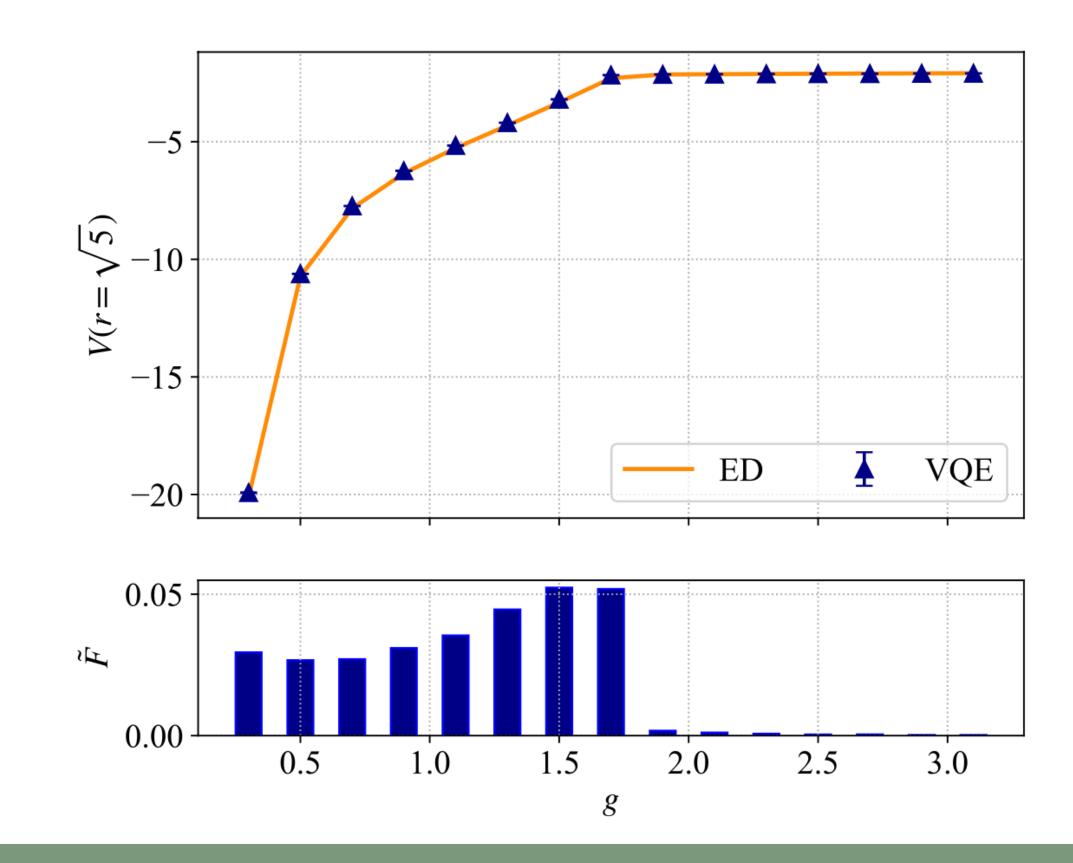
 $R_z(\theta_{30})$ 

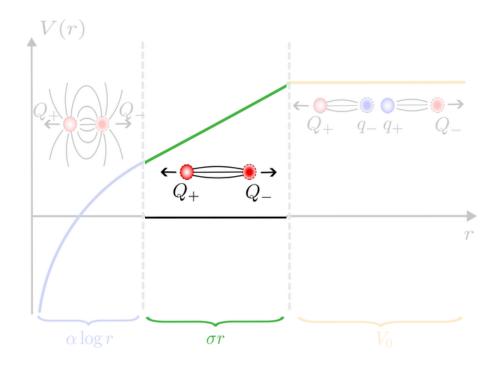
Fermions

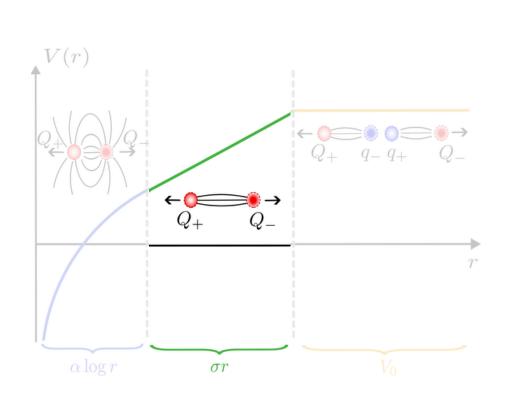
 $U_{20y_1}\mapsto |0\rangle$  -

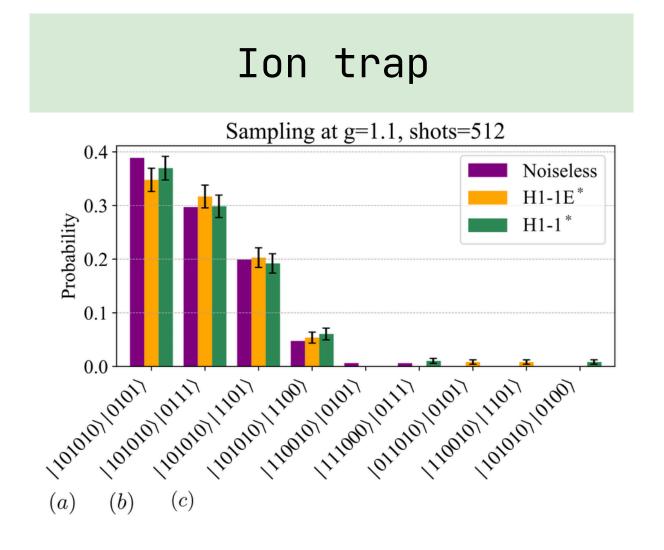
#### VQE results

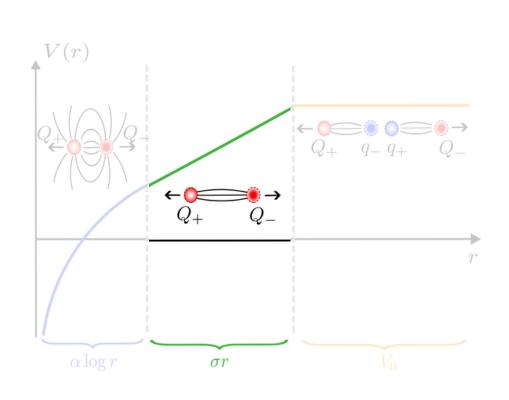
Noiseless variational quantum results (NFT and 10^4 shots)

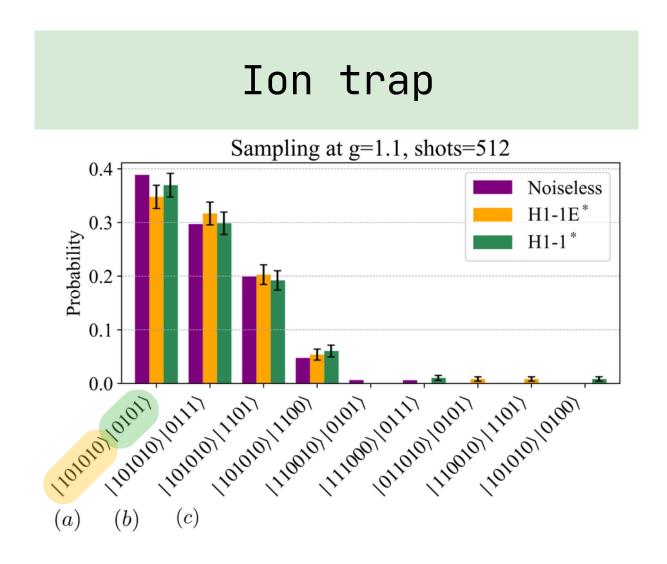


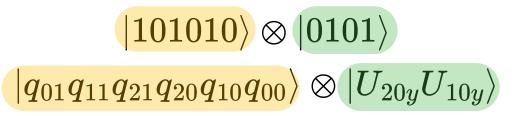


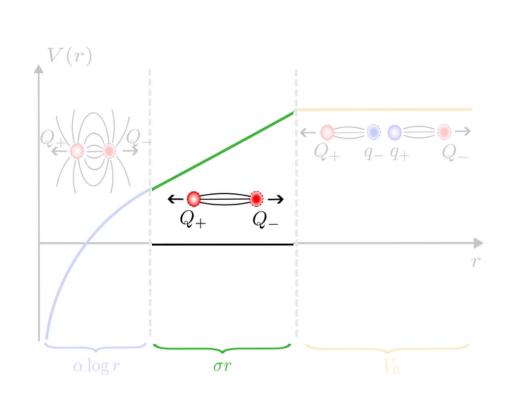


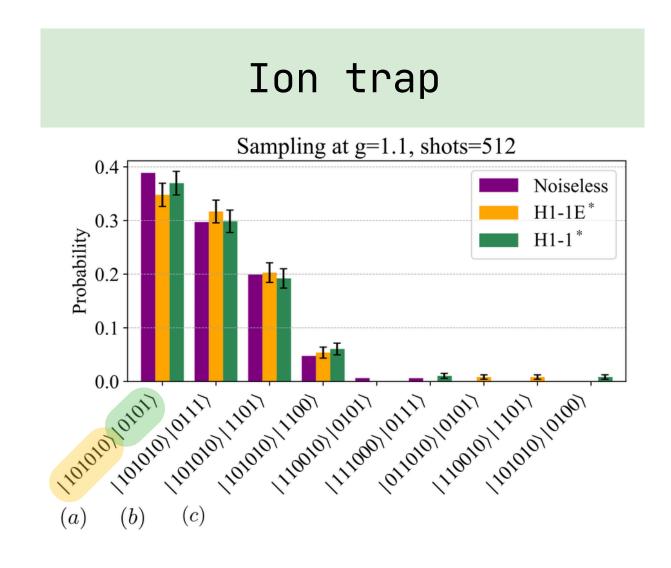


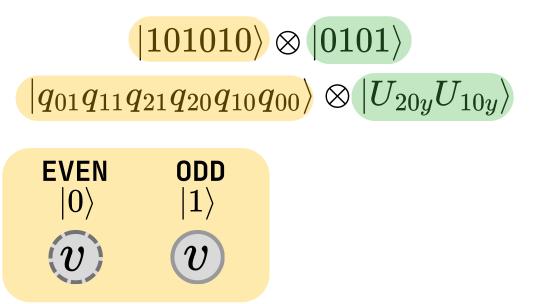


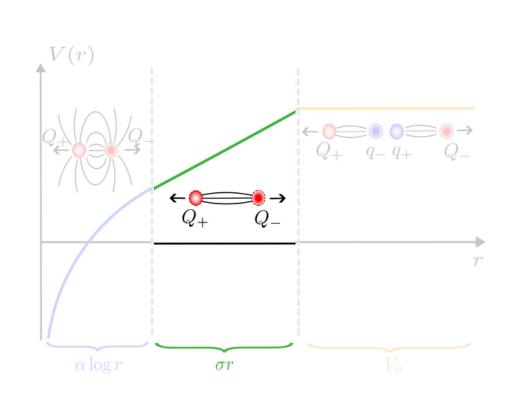


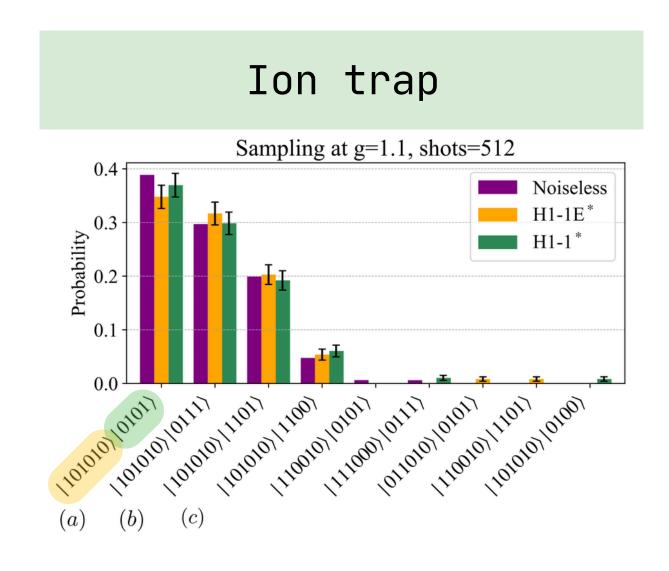


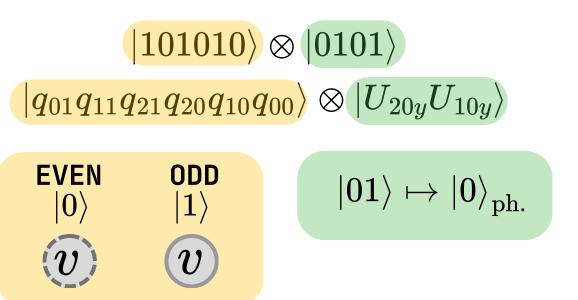


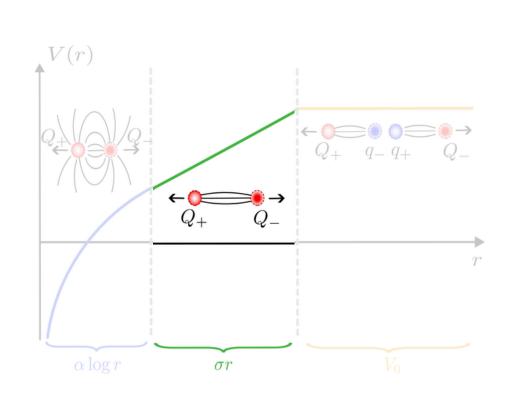


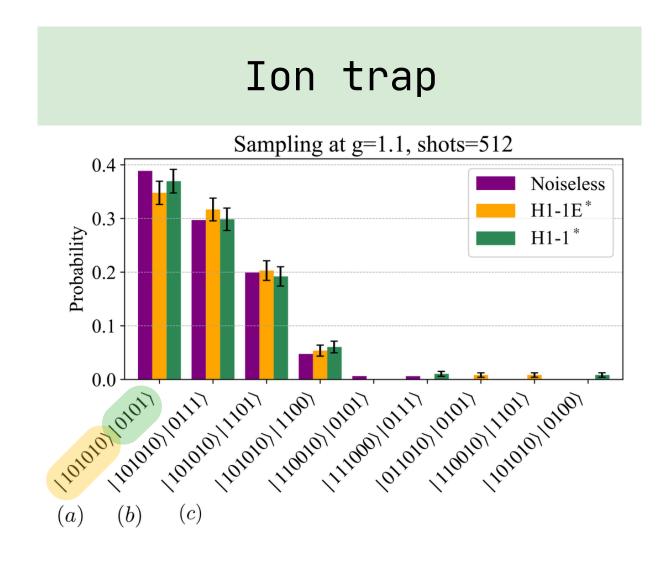








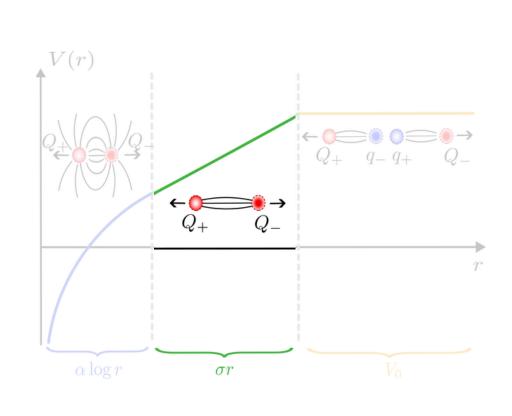




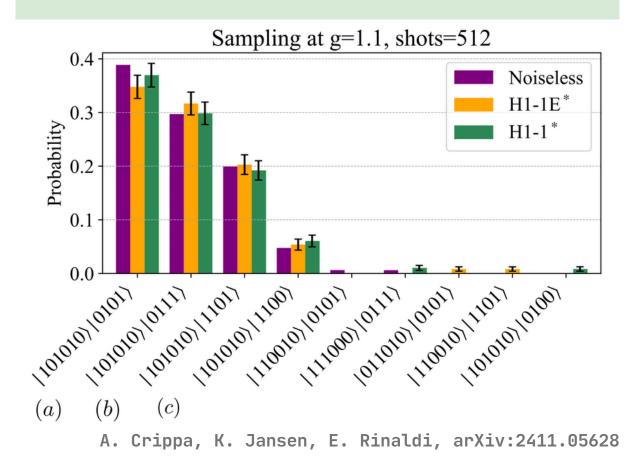


A. Crippa, K. Jansen, E. Rinaldi, arXiv:2411.05628

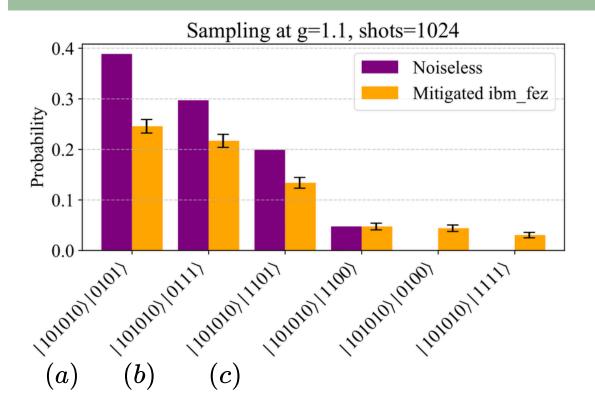
(a)



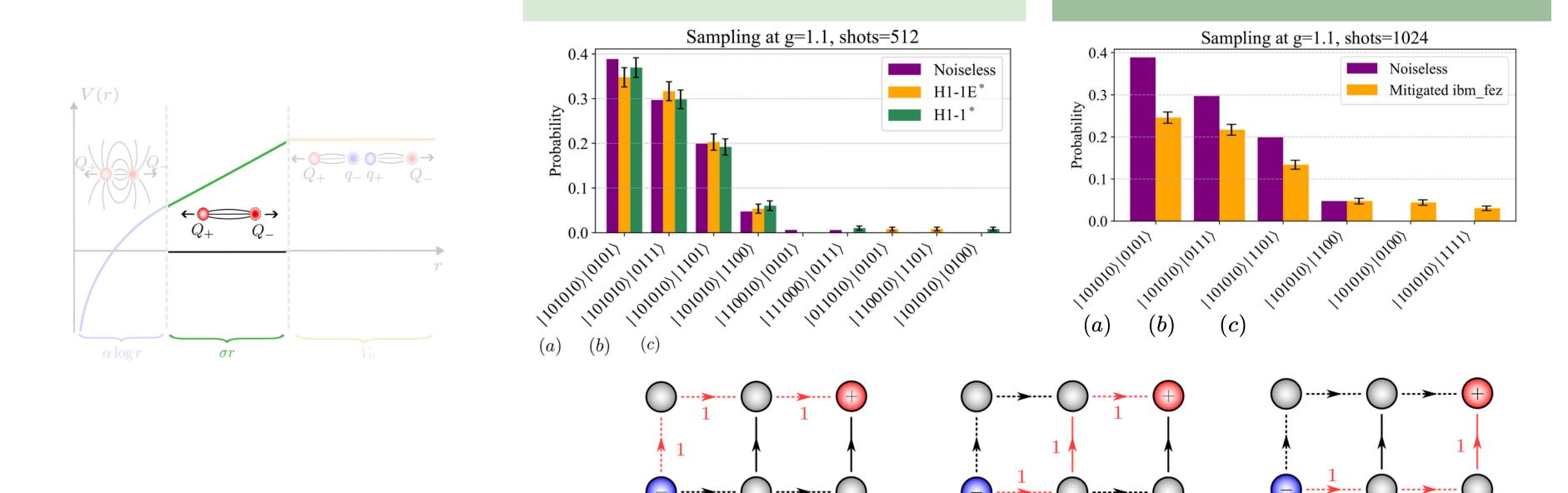
#### Ion trap



#### Superconducting



A. Crippa, PhD thesis



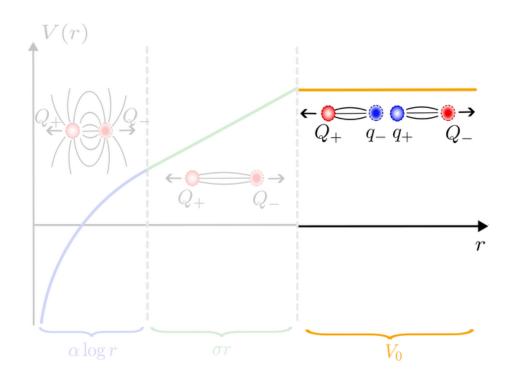
Ion trap

Superconducting

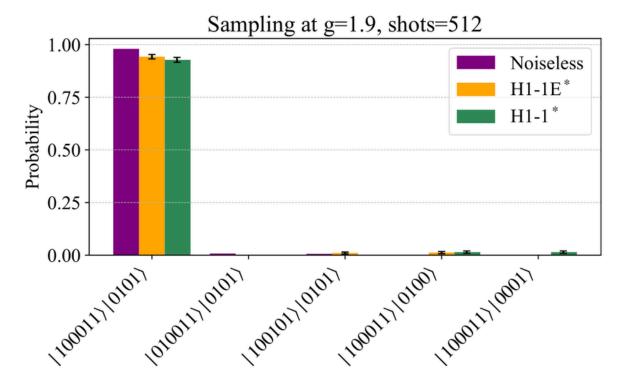
(c)

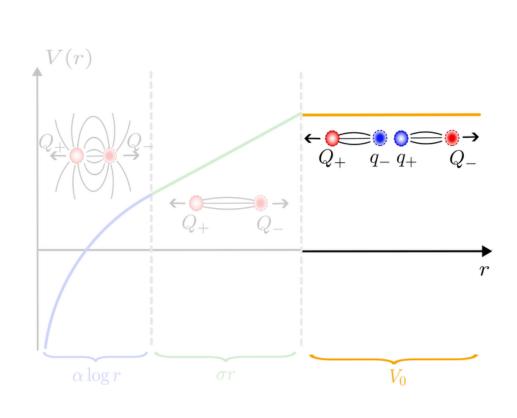
(b)

(a)

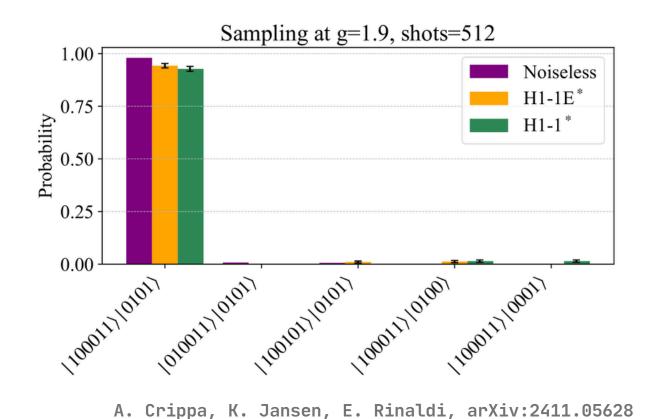


#### Ion trap

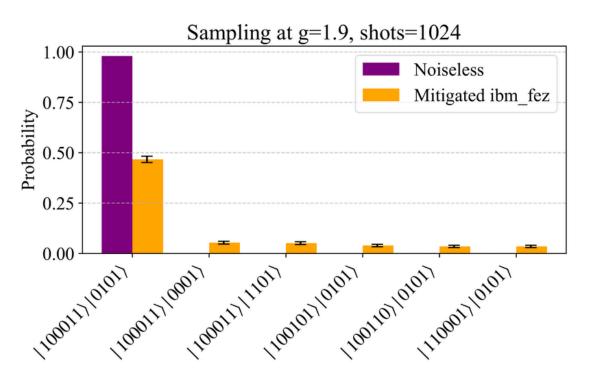




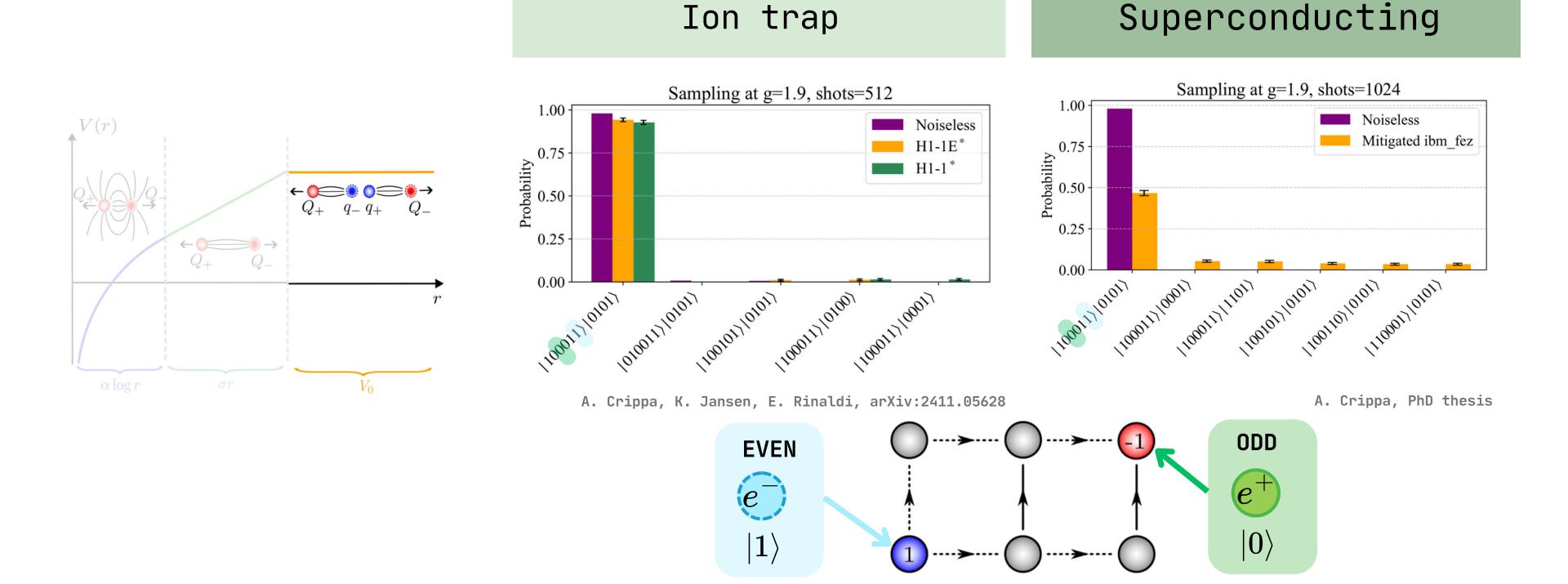
#### Ion trap

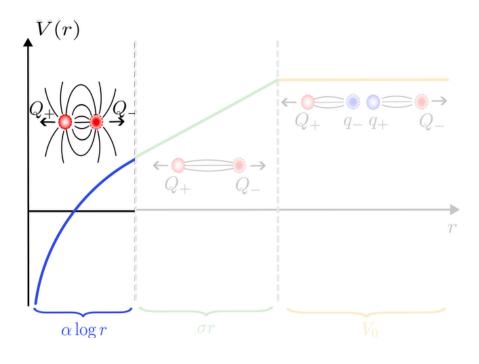


#### Superconducting

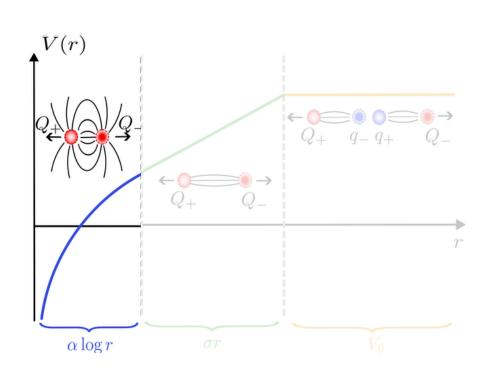


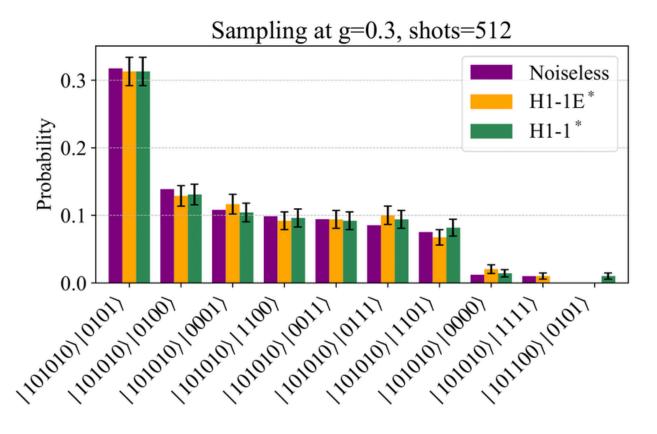
A. Crippa, PhD thesis



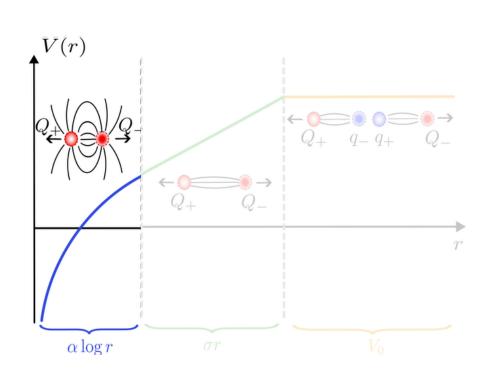


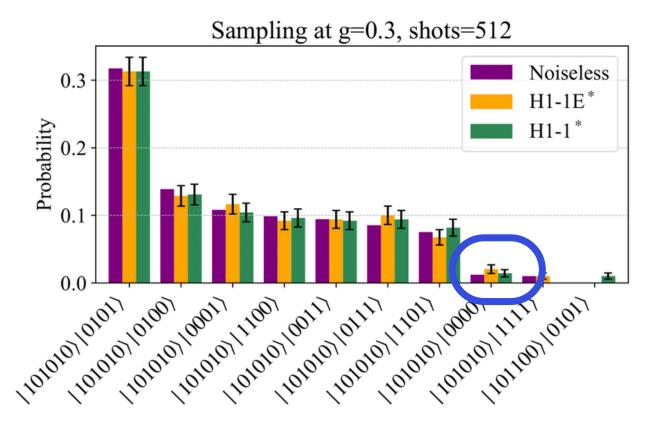
#### Ion trap





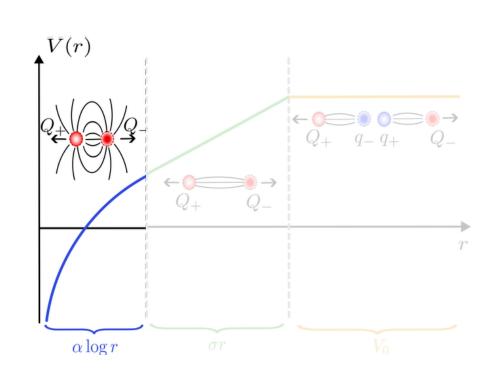
#### Ion trap

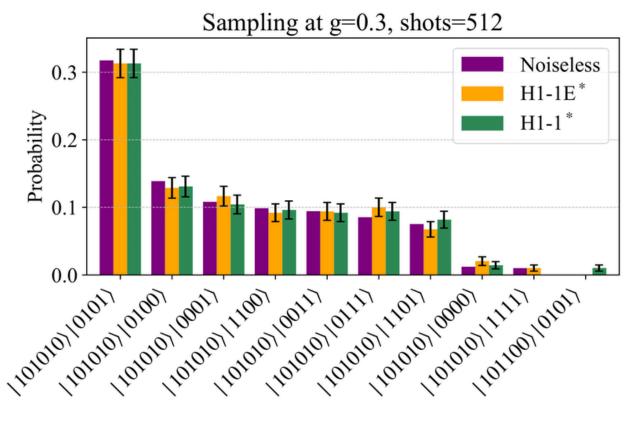


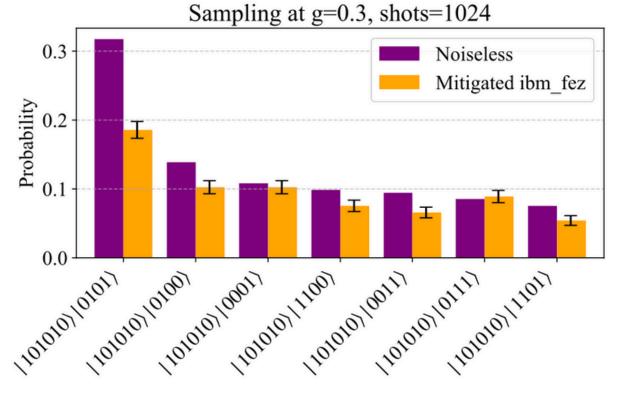




#### Superconducting





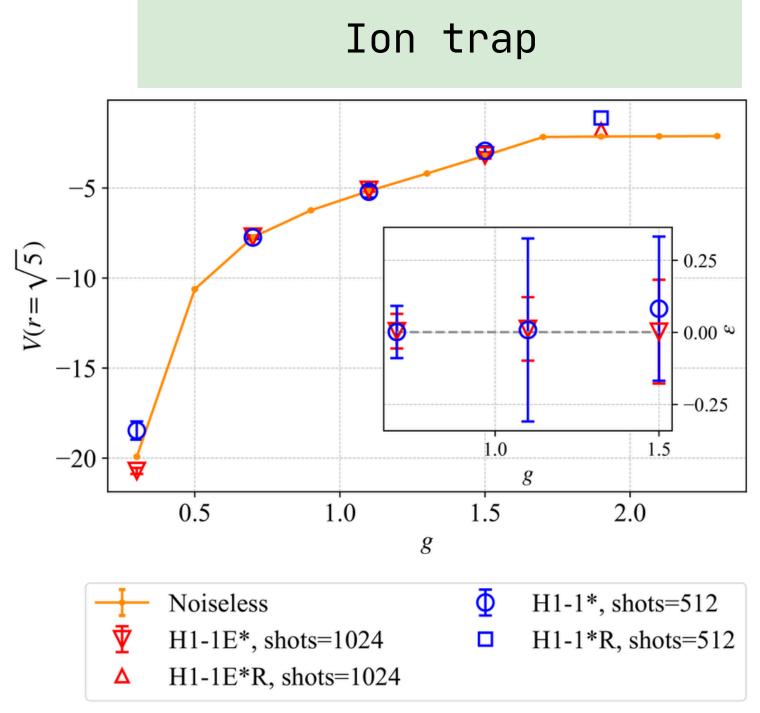


A. Crippa, K. Jansen, E. Rinaldi, arXiv:2411.05628

A. Crippa, PhD thesis

Static potential

Static potential



Static potential Ion trap 0.25 · 0.00 ω -15-0.251.0 1.5 -20-0.5 1.0 1.5 2.0 g Noiseless H1-1\*, shots=512 **Emulator** H1-1E\*, shots=1024 H1-1\*R, shots=512 H1-1E\*R, shots=1024

Static potential Ion trap 0.25  $\omega$  00.0 -15-0.251.0 1.5 -20-0.5 1.0 1.5 2.0 g

**Emulator** 

Noiseless

 ▼ H1-1\*, shots=512

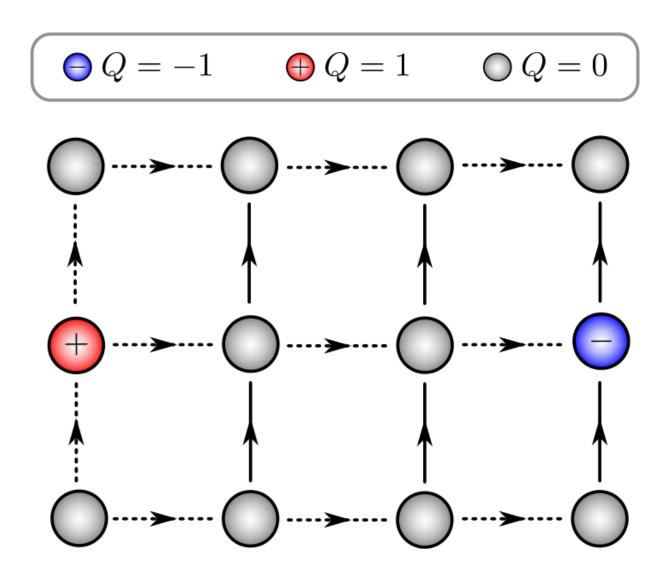
 ▼ H1-1E\*, shots=1024

 □ H1-1\*R, shots=512

 △ H1-1E\*R, shots=1024

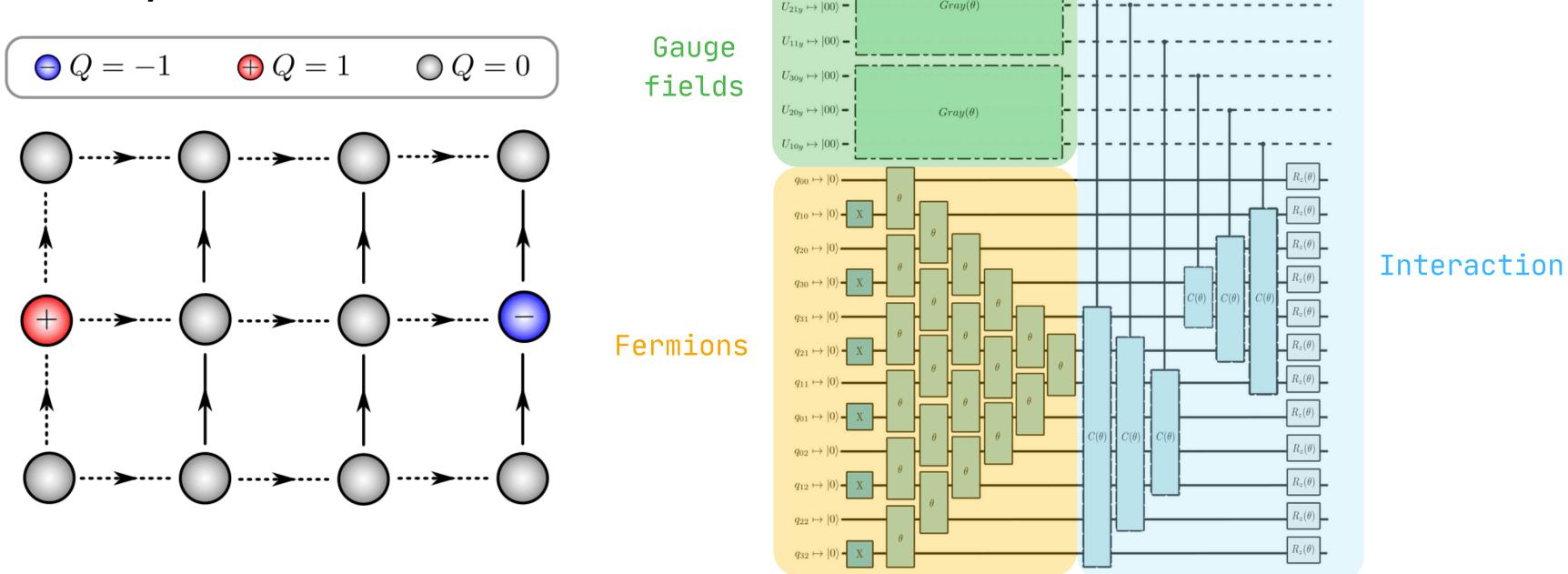
Real hardware

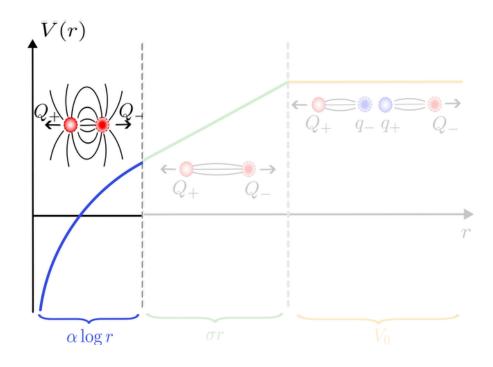
#### 4x3 system

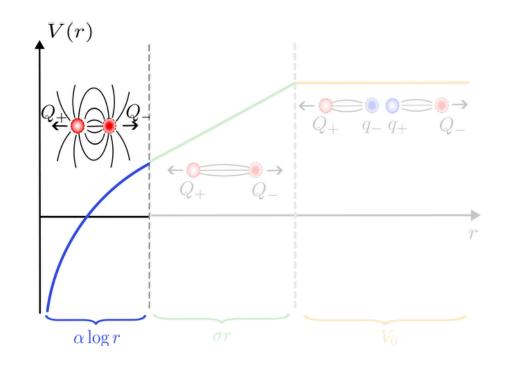


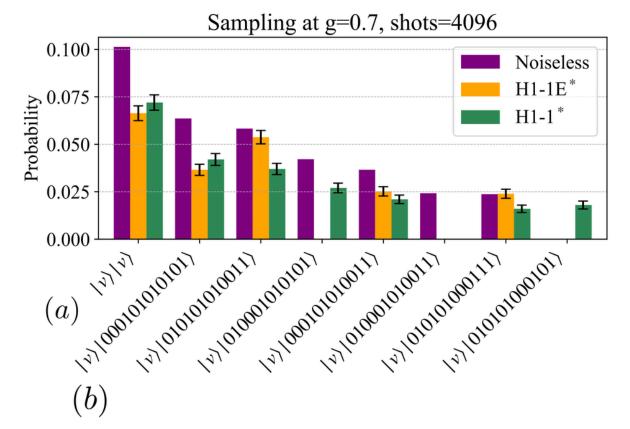
## Quantum circuit

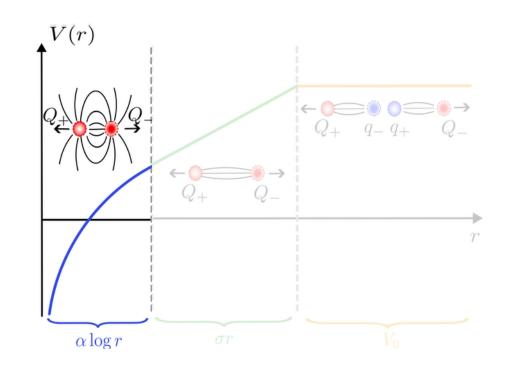
### 4x3 system

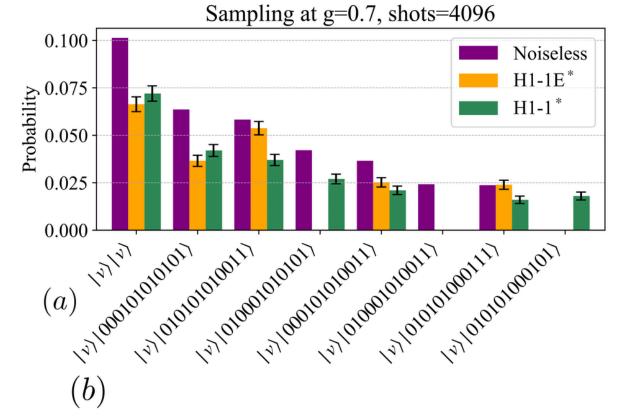


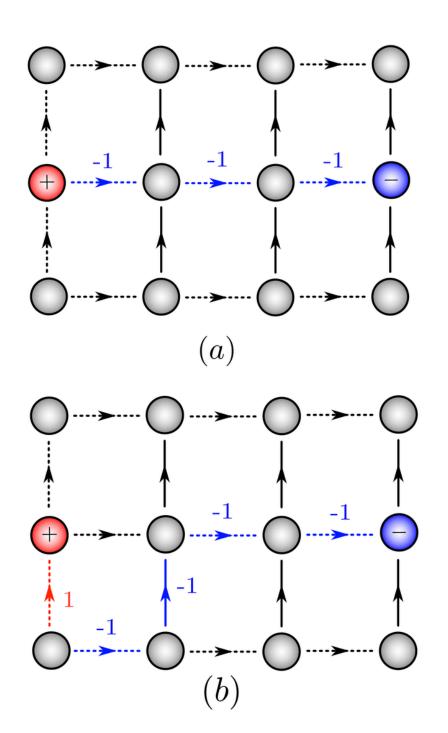




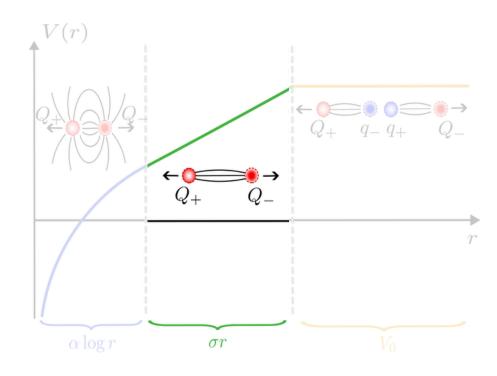


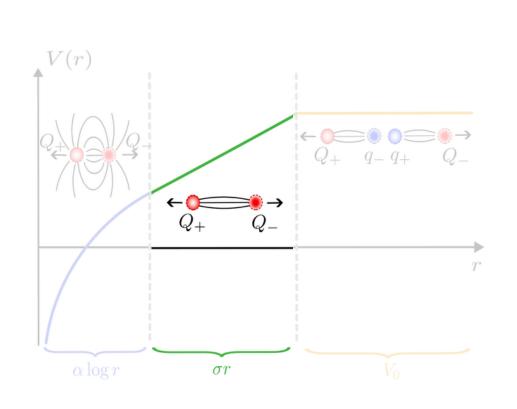


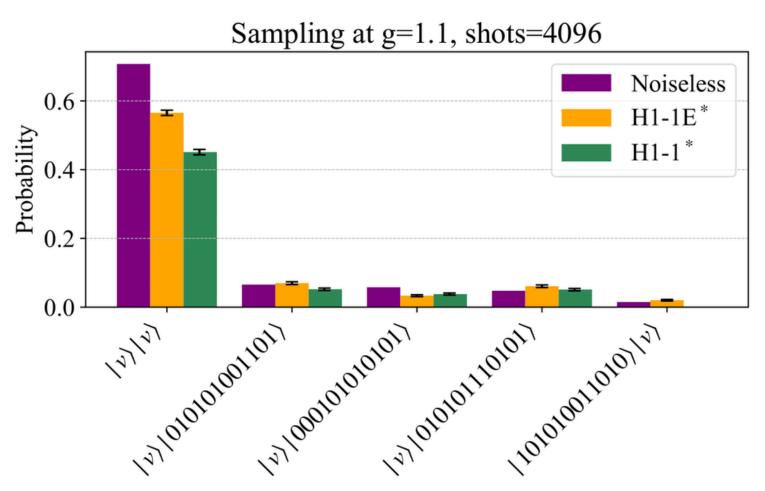


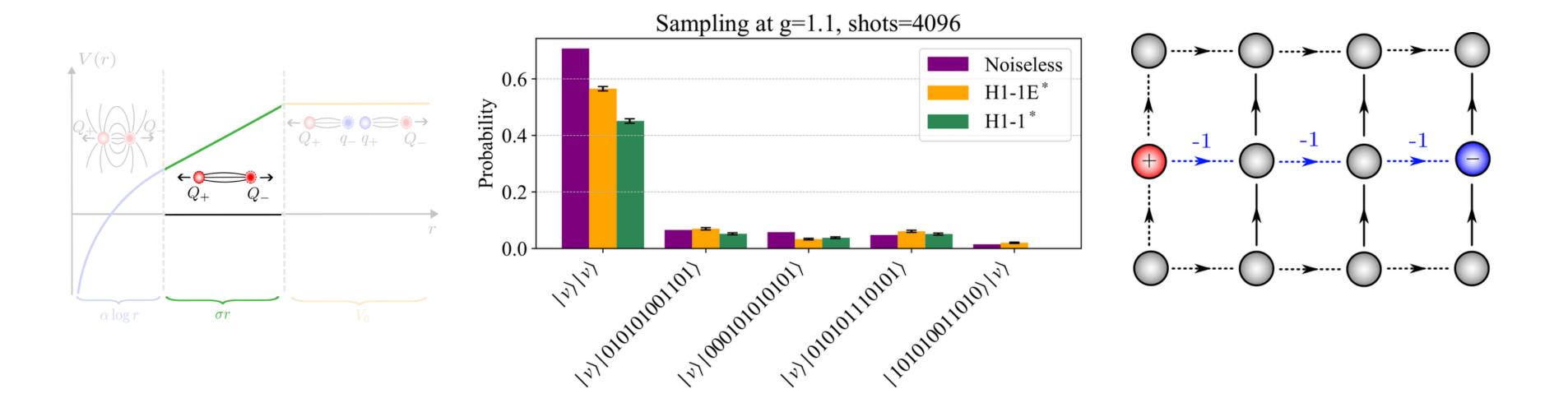


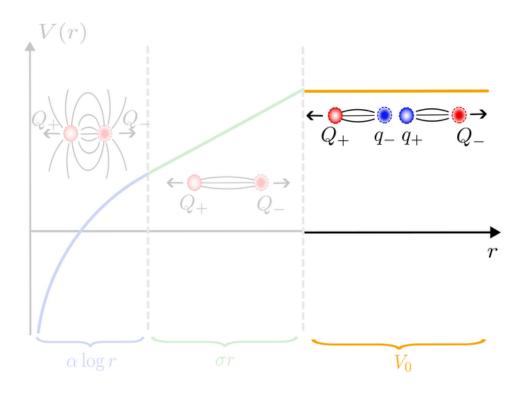
A. Crippa, K. Jansen, E. Rinaldi, arXiv:2411.05628

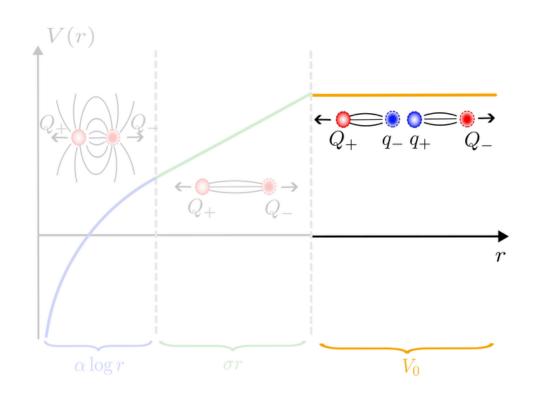


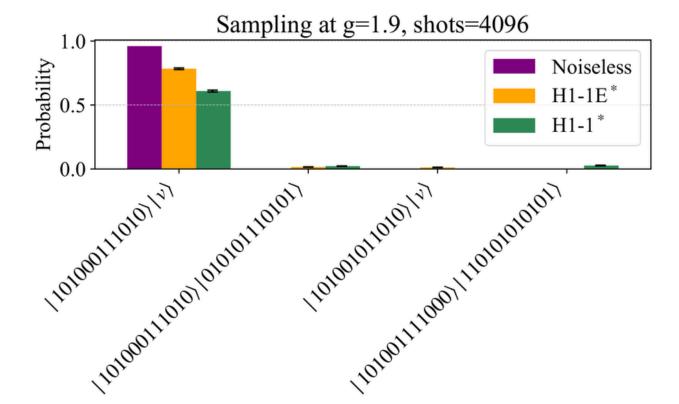


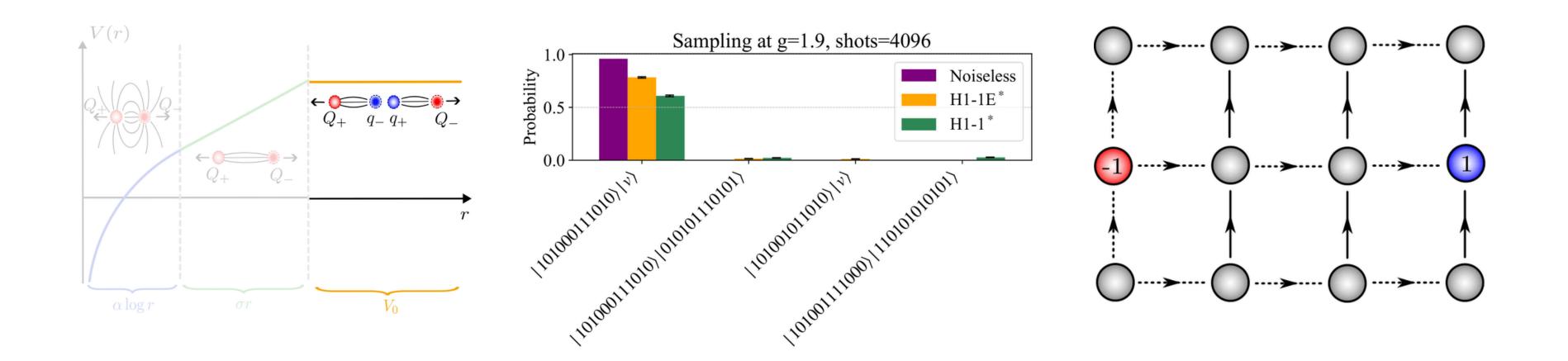












# Conclusions

• Visualize confining electric fluxes and string breaking.

# Conclusions

- Visualize confining electric fluxes and string breaking.
- Develop expressive Ansaetze describing the system, using mutual information.

## Conclusions

- Visualize confining electric fluxes and string breaking.
- Develop expressive Ansaetze describing the system, using mutual information.
- Results with real quantum hardwares.

# Thank you for your attention!

## BACKUP SLIDES

### Encoding

#### Gauge fields

Map with Gray encoding

$$egin{aligned} \hat{E} &\mapsto -|00
angle \langle 00| + |11
angle \langle 11| = -rac{1}{2}[\sigma_0^z + \sigma_1^z] \ \hat{U}^\dagger &\mapsto |00
angle \langle 01| + |01
angle \langle 11| = rac{1}{2}igl[\sigma_0^-(I_1 + \sigma_1^z) + \sigma_1^-(I_0 - \sigma_0^z)igr] \end{aligned}$$

#### Fermions

Map to spins with **Jordan-Wigner** transformation

$$\hat{\phi}_j^\dagger = \Big[\prod_{k < j} (i\sigma_k^z)\Big]\sigma_j^- \qquad \hat{\phi}_j = \Big[\prod_{k < j} (-i\sigma_k^z)\Big]\sigma_j^+$$

### U operator

Example l=2 U(lowering)

$$U_{
m ladder} = egin{pmatrix} 0 & & & & & \ 1 & 0 & & & & \ & 1 & 0 & & & \ & & 1 & 0 & & \ & & & 1 & 0 \end{pmatrix}$$

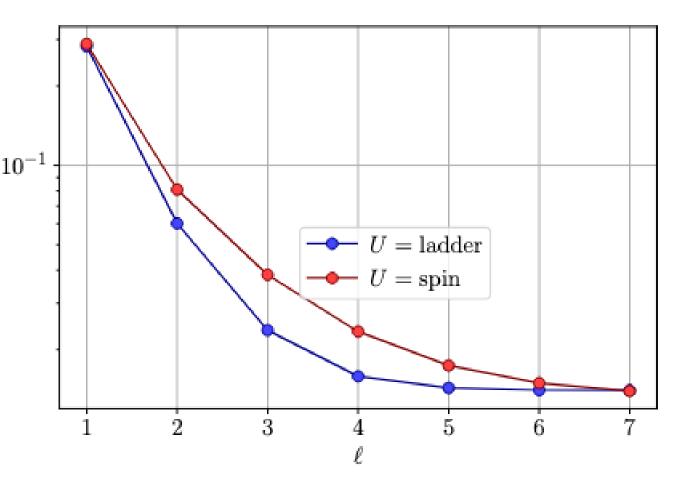
$$U_{
m spin} = rac{S^-}{\ell} = rac{1}{2} egin{pmatrix} 0 & & & & \ 2 & 0 & & & \ & \sqrt{6} & 0 & & \ & & \sqrt{6} & 0 & \ & & 2 & 0 \end{pmatrix}$$

$$U_{
m spin} = rac{1}{\ell} \sqrt{\ell(\ell+1) - m(m-1)} \delta_{m,m-1}$$

$$U_{
m spin}^\dagger = rac{1}{\ell} \sqrt{\ell(\ell+1) - m(m+1)} \delta_{m,m+1}$$

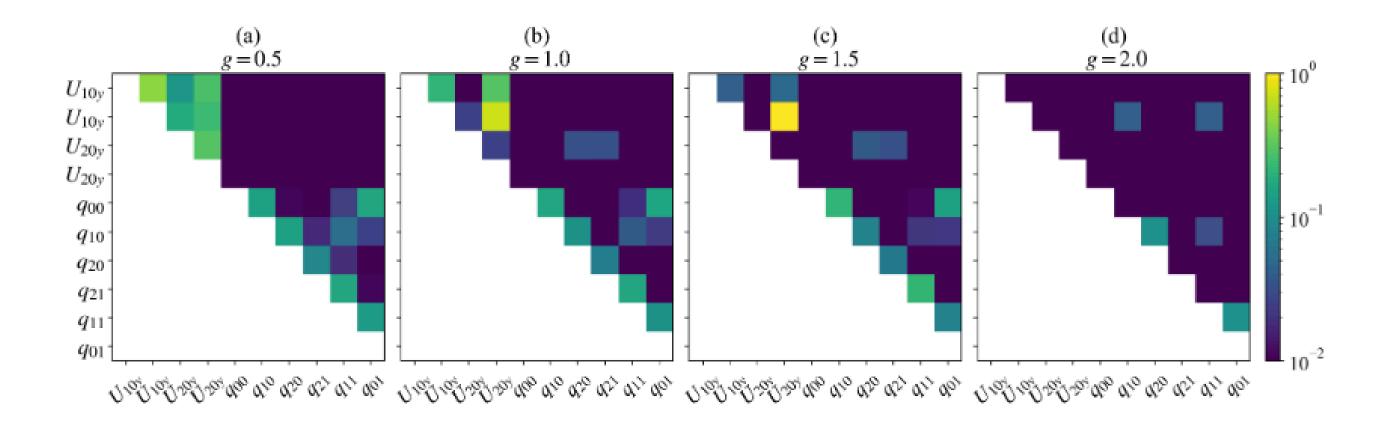
$$E_{
m spin} = S^z = m \delta_{m,m} \qquad m \in [-l,l]$$

#### Energy gap convergence

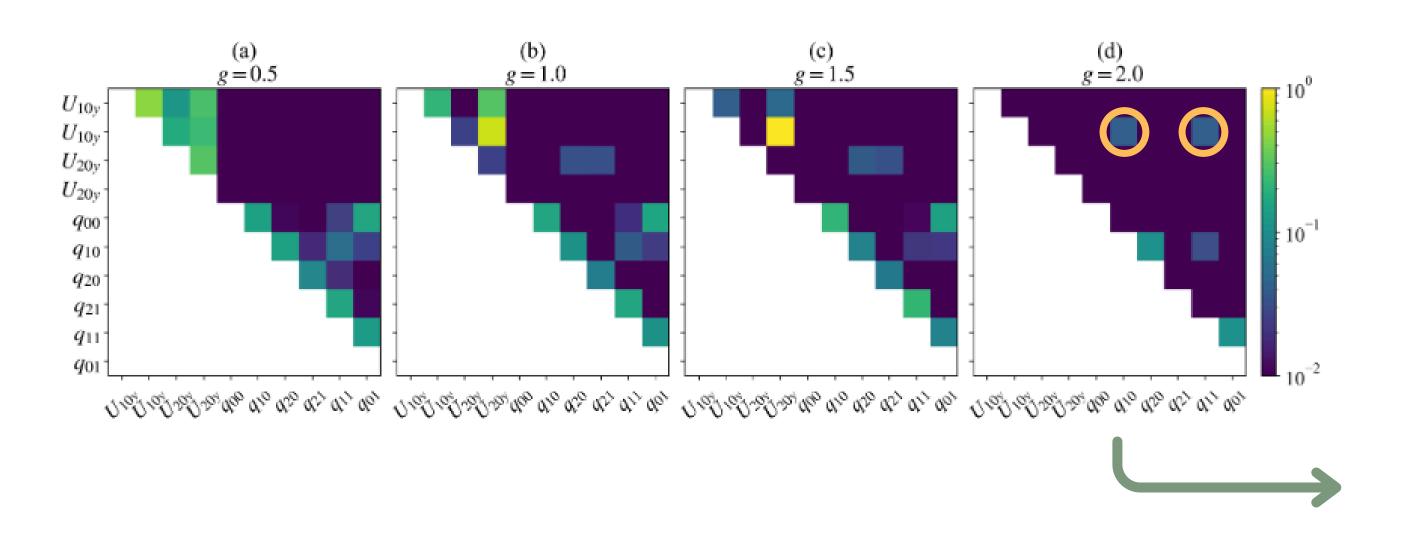


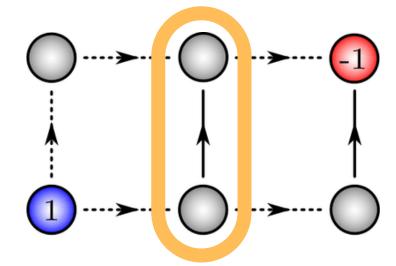
$$I(X;Y) = S(X) + S(Y) - S(X,Y)$$

$$I(X;Y) = S(X) + S(Y) - S(X,Y)$$

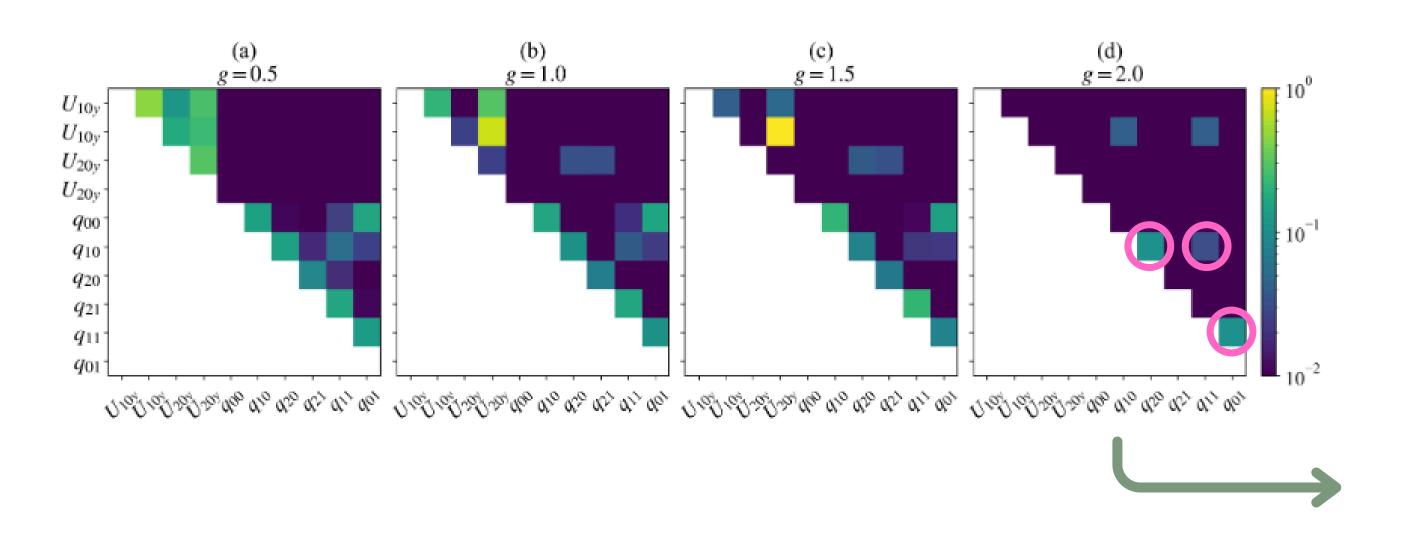


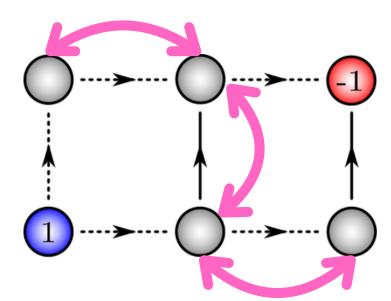
$$I(X;Y) = S(X) + S(Y) - S(X,Y)$$



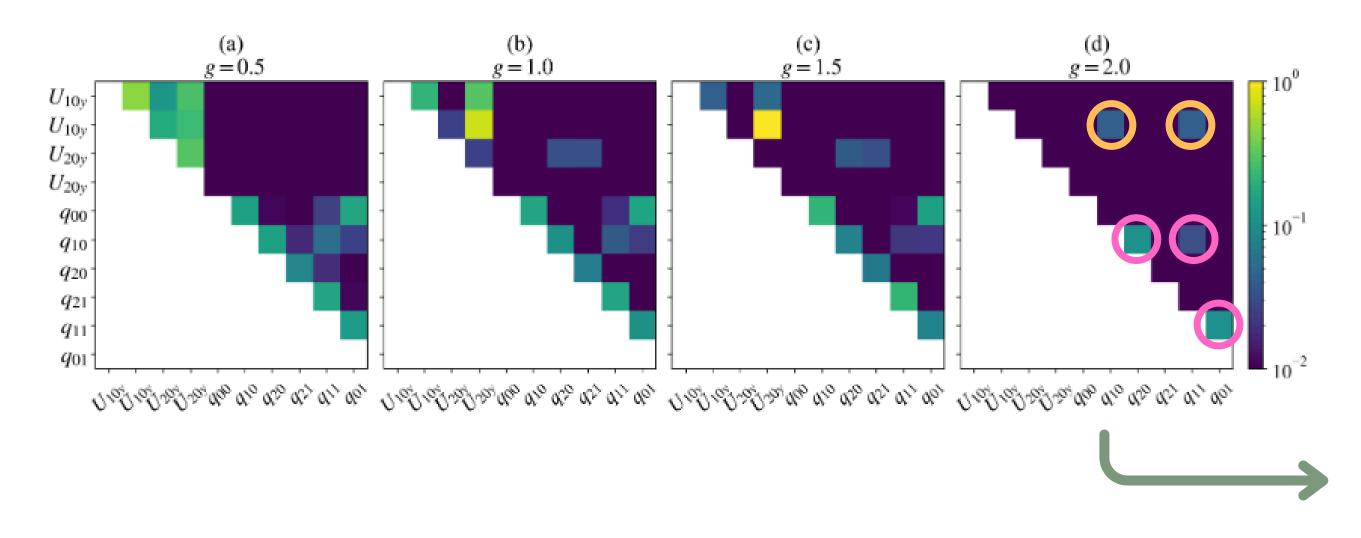


$$I(X;Y) = S(X) + S(Y) - S(X,Y)$$

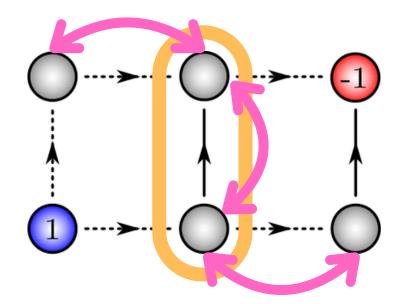




$$I(X;Y) = S(X) + S(Y) - S(X,Y)$$

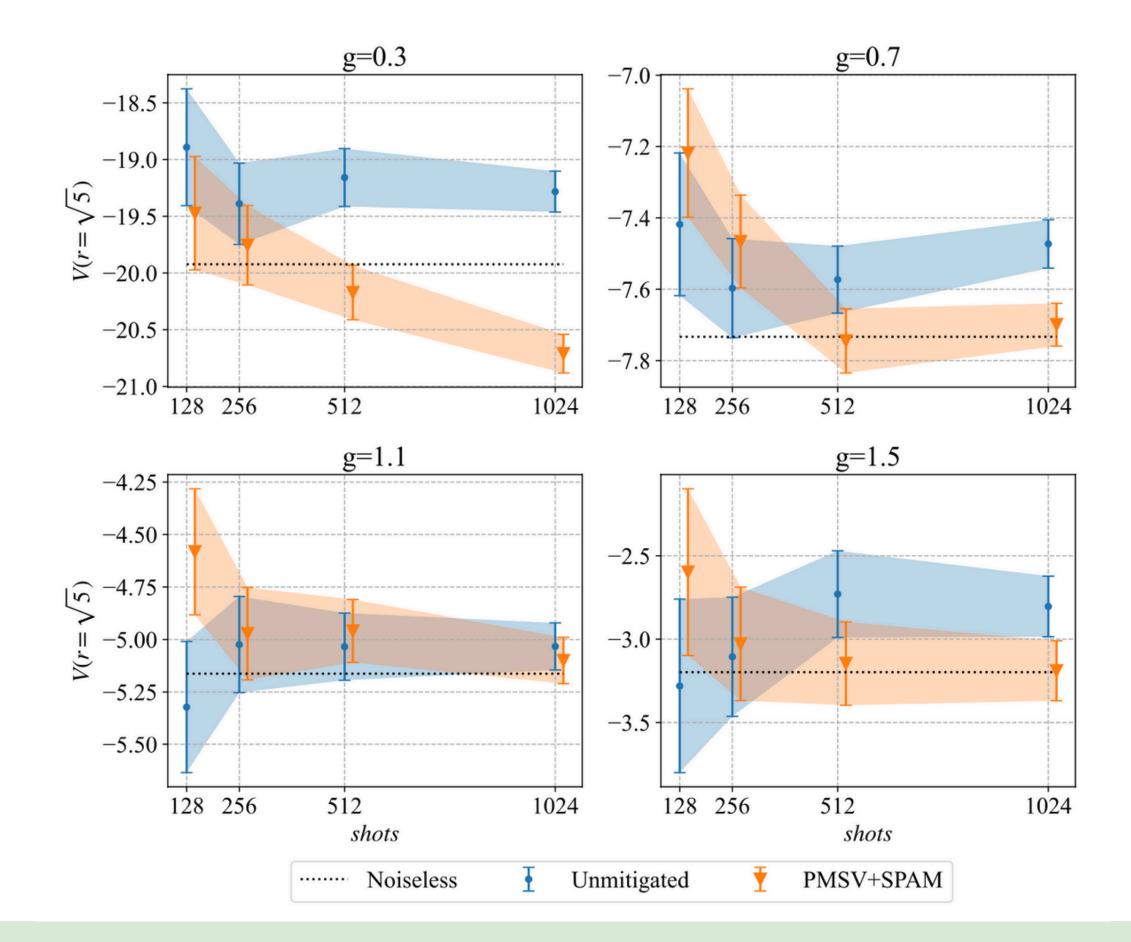


Dynamical charges+ static charges are isolated.



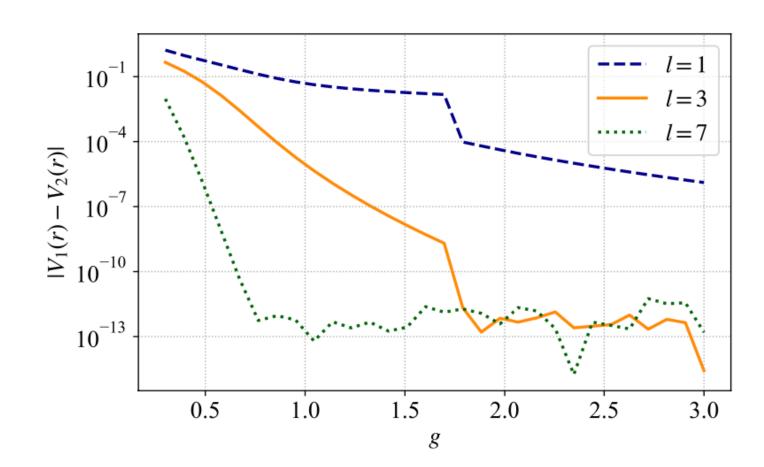
### H1-1E

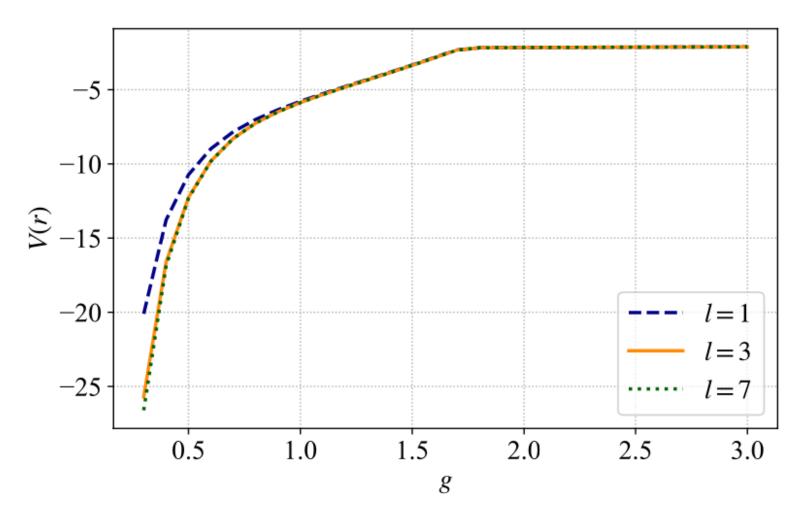
Study of the number of shots at four values of the coupling.



### Truncation and Gauss's law

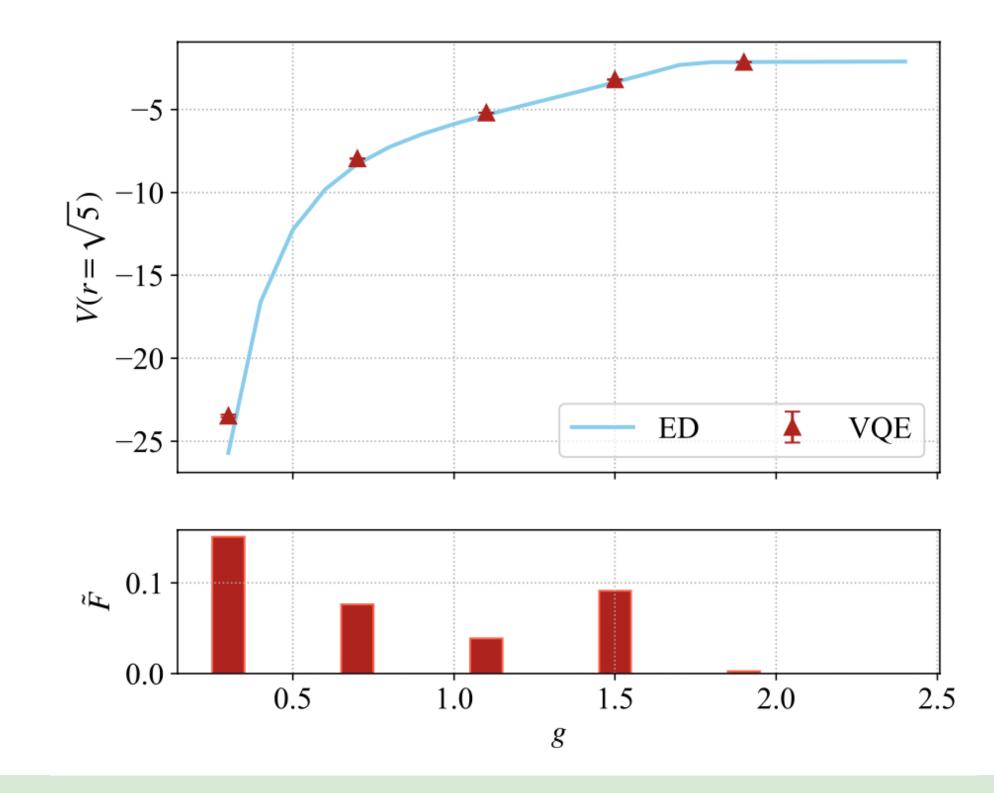
$$egin{aligned} V_1(r) & o \{E_{10y}, E_{20y}\} \ V_2(r) & o \{E_{00y}, E_{20y}\} \end{aligned}$$





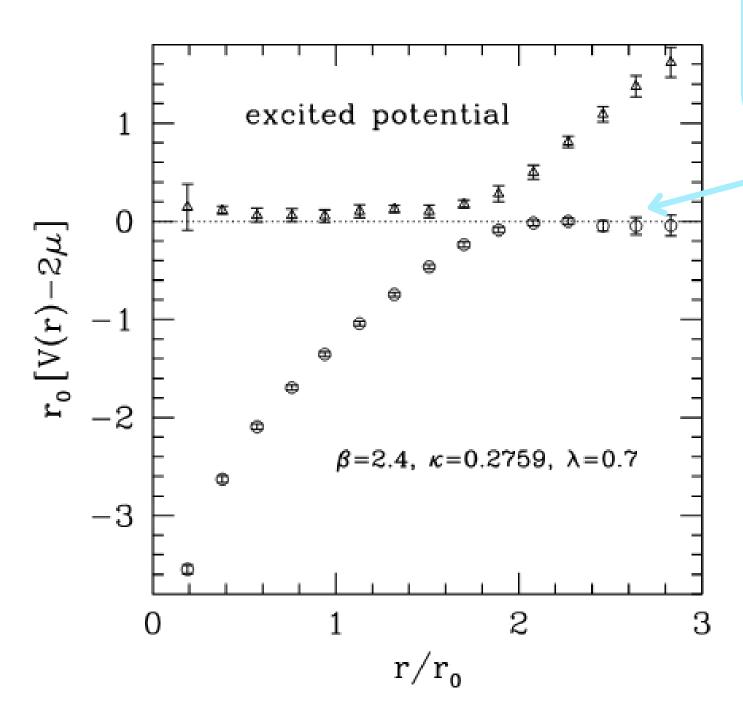
Static potential with different truncation values.

## VQE Results with l=3



Noiseless variational quantum results 3x2 system.
(NFT and 10^4 shots)

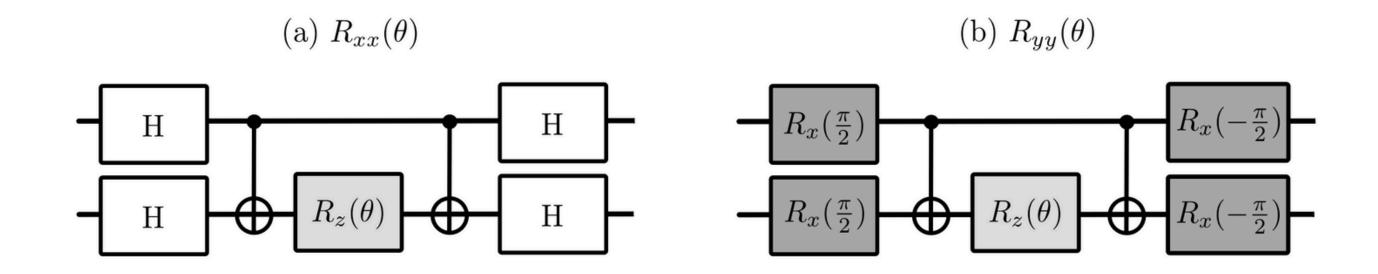
## V(r) with MC

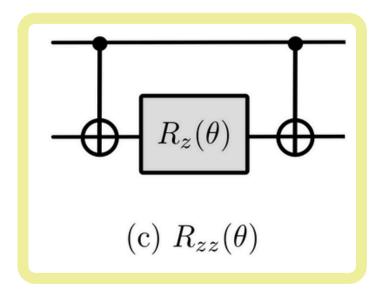


Large distances the potential approaches the asymptotic value  $2\mu$ 

Ground state and first excited state static potentials as functions of static quark separation. Simulations of SU(2).

# iSWAP gates





Added for NFT optimizer

# Quantum Hardware

| Qubit Type      | Pros                                                                                                                            | Cons                                                                                                                                                | Examples                                       |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Superconducting | <ul> <li>High gate speeds         and fidelities.</li> <li>Established         technology.</li> </ul>                           | <ul> <li>Requires cryogenic cooling.</li> <li>Short coherence times.</li> </ul>                                                                     | Google<br>IBM Q                                |
| Trapped Ions    | <ul> <li>Extremely high gate fidelities.</li> <li>Long coherence times</li> <li>No extreme cryogenic cooling needed.</li> </ul> | <ul> <li>Slow gate times and operations.</li> <li>Difficulty in aligning and scaling lasers.</li> <li>Ion charges may limit scalability.</li> </ul> | AG Quantum Optics and Spectroscopy  OUANTINUUM |

## Error mitigations

Partition Measurement Symmetry Verification (PMSV)

Measurements of specific Pauli strings that encode the system's known **symmetries** (e.g. fermionic zero-charge sector).

Measurement outcomes not satisfying the symmetry are **discarded**.

State Preparation And Measurement error mitigation (SPAM)

Uses a calibration matrix that characterizes the noise profile of the quantum device.

The **inverse** of this matrix is applied to correct the measured expectation values.

## Error mitigations

#### R-state selection

$$\langle \psi | \hat{H} | \psi 
angle = \sum_{m,n=0}^{2^N-1} \langle \psi | m 
angle \langle m | \hat{H} | n 
angle \langle n | \psi 
angle$$

$$=\sum_{m,n}{}'|\langle m|\psi
angle|^2|\langle n|\psi
angle|^2rac{\langle m|H|n
angle}{\langle m|\psi
angle\langle\psi|n
angle}$$

with

$$|\psi
angle = \sum_{n=0}^{2^N-1} \langle n|\psi
angle |n
angle$$

- 1. Sample state in computational basis.
- 2.Select R computational basis states (highest probability  $|\langle n|\psi\rangle|^2$  ). Avoid noise from other states.
- 3. Calculate transition matrix elements classically,  $_{\it M}$

$$\langle m|\hat{H}|n
angle = \sum_{i=1}^M c_i \langle m|P_i|n
angle,$$

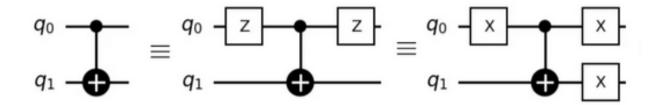
(diag.=energy of R-th state).

- 4. Calculate other terms.
- 5. Estimate final expectation value.

## Error mitigations

#### PAULI TWIRLING

Transforms complex quantum noise into Pauli noise.



Random applications of Pauli gates before and after a gate.

Now stochastic errors, improved by averaging more.

#### READOUT ERROR MITIGATION

$$C := egin{pmatrix} 1 - \Pr(0|1) & \Pr(0|1) \ \Pr(1|0) & 1 - \Pr(1|0) \end{pmatrix}$$

 $\Pr(\det j | \operatorname{prepared} i)$ 

$$CP = P_{
m noisy}$$