Phenomenology of Nucleon Form Factors

S. Pacetti, R. Baldini Ferroli, E. Tomasi-Gustafsson

International Workshop on e^+e^- collisions from ϕ to ψ University of Science and Technology of China September 23rd - 26th, 2015 - Hefei

Agenda

- The space-like region
 Proton radius
 Rosenbluth versus polarization
- 🕡 The time-like region
 - Unphysical region
 Threshold
 An amazing effect
- 🕡 The asymptotic region

DIRAC AND PAULI FORM FACTORS

Scattering amplitude
in **Born** approximation
$$\mathcal{M} = \frac{1}{q^2} \left[e \,\overline{u}(k_2) \gamma_{\mu} u(k_1) \right] \underbrace{\left[e \,\overline{U}(p_2) \Gamma^{\mu}(p_1, p_2) U(p_1) \right]}_{\text{Nucleon EM 4-current: } J_{M}^{\mu}}$$

From Lorenz and gauge invariance

$$\Gamma^{\mu}(\boldsymbol{p}_1,\boldsymbol{p}_2) = \gamma^{\mu} F_1^N(\boldsymbol{q}^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} F_2^N(\boldsymbol{q}^2)$$

 $Q_N = N$ electric charge

 $\kappa_{N} = N$ anomalous magnetic moment

SACHS FORM FACTORS

 $\widehat{W} \ G_E^N(0) = \mathcal{Q}_N$

 $\widehat{\psi} G_M^N(\mathbf{0}) = \mu_N$

is the nucleon magnetic moment

CROSS SECTIONS AND ANALYTICITY

$$\mathcal{G}_{E}^{\rho}(q^{2}) = \int d^{3}\vec{r} \,\rho(r) \,e^{i\,\vec{q}\cdot\vec{r}} = 1 + \frac{1}{6}q^{2}\left\langle r_{c}^{2}\right\rangle + \mathcal{O}(q^{4})$$

 $\rho(r)$: normalized spherical charge density

Ongoing discussions...

 $q^2 \rightarrow 0^-$ extrapolation

Two-photon exchange

Analyticity via dispersion relations and QCD counting rules can give directly the proton radius... Logarithmic derivative of form factor at $q^2 = 0$ by means of dispersion relations for the logarithm

$\mu_{P} G_{F}^{P}/G_{M}^{P}$: Rosenbluth AND POLARIZATION TECHNIQUES

"Standard" dipole for the proton magnetic form factors G^p

Linear deviation from the dipole for the electric proton form factor G_{r}^{p}

QCD scaling still not reached

Zero crossing for G_{r}^{ρ}

Polarization data do not agree with old Rosenbluth data (>)

New Rosenbluth separation data from JLab still do not agree with polarization data

THE TIME-LIKE REGION

THE TIME-LIKE REGION

THE TIME-LIKE REGION

Differential cross section $e^+e^- \rightarrow p\overline{p}$ A. Zichichi, S. M. Berman, N. Cabibbo, R. Gatto [NC XXIV (1962) 170] $\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} \left[(1 + \cos^2 \theta) G_M^{\rho} ^2 + \frac{1}{\tau} \sin^2 \theta G_E^{\rho} ^2 \right]$
Optical theorem
Im $\langle \overline{N}(p')N(p) j^{\mu} 0\rangle \sim \sum_{n} \langle \overline{N}(p')N(p) j^{\mu} n\rangle \langle n j^{\mu} 0\rangle$ n⟩ are on-shell intermediate states: 2 π , 3 π , 4 π ,
$\frac{\gamma}{ \mathbf{n}\rangle\langle\mathbf{n} } = \frac{N}{N}$ Form factors are complex for $q^2 > 4M_{\pi}^2$
The cross section is an even function of $\cos \theta$
It does not depend on the form factor phases
$\int M$ At high q^2 the $ G^p_E ^2$ contribution is suppressed
The unphysical region is not accessible through the annihilations $e^+e^- \leftrightarrow p\bar{p}$

TIME-LIKE $|G_E^{\rho}/G_M^{\rho}|$ measurements

THE UNPHYSICAL REGION

THE UNPHYSICAL REGION

THE UNPHYSICAL REGION

In that region, form factors

- are still well defined but not (directly) experimentally accessible
- are complex and, following VMD-based models, receive their main contribution from intermediate resonances

HANDLING THE UNPHYSICAL REGION1

Model dependent disclosing [Höler, Mergell, Meissner, Hammer]

Optical theorem $\operatorname{Im}\langle \overline{N}(p')N(p)|j^{\mu}|0\rangle \sim \sum \langle \overline{N}(p')N(p)|j^{\mu}|n\rangle \langle n|j^{\mu}|0\rangle$

Dispersion relations for the imaginary part $F(q_{SL}^2) = \frac{1}{\pi} \int_{4M_{Z}^2}^{\infty} \frac{\text{Im}F(q_{TL}^2)}{q_{TL}^2 - q_{SL}^2} dq_{TL}^2$

HANDLING THE UNPHYSICAL REGION2

 $\pi^{0}(p_{\pi})$

 $p(p_1$

PhysRevC86 (2012) 025204]

Annihilation cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta \mathcal{C}}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right]$$

R

It is responsible for the multi-photon $p\overline{p}$ final state interaction, becomes ineffective few MeV above threshold and accounts also for gluon exchange.

factor

STEP AND PLATEAU IN **BABAR** DATA

STEP AND PLATEAU IN **BABAR** DATA

 $G_{
m eff}^{
m p},$ we get what we put in. . .

ISOTROPY AT THE $p\overline{p}$ PRODUCTION THRESHOLD

$$G_E(4M^2)=G_M(4M^2)$$

Electromagnetic current:

 $J^{\mu}(p_{1}, p_{2}) = \overline{U}(p_{2}) \left[\gamma^{\mu} F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_{2}(q^{2}) \right] U(p_{1})$ $\blacksquare F_{1} = \frac{q^{2} G_{E} - 4M^{2} G_{M}}{q^{2} - 4M^{2}} \blacksquare F_{2} = 4M^{2} \frac{G_{M} - G_{E}}{q^{2} - 4M^{2}}$

 F_1 and F_2 "can" be analytic (pointlike limit: $F_1(q^2) = 1$ and $F_2(q^2) = 0$)

Annihilation cross section
$$\left[\widetilde{G}_{E,M} \equiv G_{E,M}(4M^2)\right]$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta \mathcal{C}}{4q^2} \left[(1 + \cos^2 \theta) |G_M|^2 + \frac{1}{\tau} \sin^2 \theta |G_E|^2 \right] \xrightarrow{|\widetilde{G}_E| = |\widetilde{G}_M|}{q^2 \to 4M^2} \xrightarrow{\alpha^2 \beta \mathcal{C}} \left[2|\widetilde{G}_M|^2 \right]$$

Partial wave form factors

ANISOTROPY AT THE PRODUCTION THRESHOLD

$G_E(4M^2) eq G_M(4M^2)$

Dirac and Pauli form factors F_1 and F_2 are not analytic

To preserve G_E and G_M analyticity, F_1 and F_2 must have a simple pole at the threshold with opposite residues

 $\mathbf{I} F_1 = \frac{-4M^2 \Delta \widetilde{G}}{q^2 - 4M^2} + F_1^{\text{an}} \qquad \mathbf{I} F_2 = \frac{4M^2 \Delta \widetilde{G}}{q^2 - 4M^2} + F_2^{\text{an}} \qquad \mathbf{I} \Delta \widetilde{G} \equiv \widetilde{G}_E - \widetilde{G}_M$ $F_2^{\text{an}} \text{ is the analytic part of } F_1 = \mathbf{I} + \mathbf{I}$

 $F_{1,2}^{an}$ is the analytic part of $F_{1,2}$

Partial wave form factors

$$G_{S} = \frac{2\sqrt{\frac{q^{2}}{4M^{2}}}G_{M} + G_{E}}{3} \xrightarrow{\widetilde{G}_{M}} \frac{\Delta \widetilde{G}}{3} \qquad G_{D} = \frac{\sqrt{\frac{q^{2}}{4M^{2}}}G_{M} - G_{E}}{3} \xrightarrow{\frac{\Delta \widetilde{G}}{3}}$$

SOURCES OF ANISOTROPY

MEASURING ANISOTROPY AT THRESHOLD

Very difficult

Efficiency drops with proton antiproton velocity

Very difficult

Normalization (Coulomb corrections...)

Difficult

ISR technique: not enough statistics

Feasible with heavy baryons

The weak decay allows detection at threshold and polarization measurements (BESIII has...)

The $e^+e^- ightarrow \Lambda_c\overline{\Lambda}_c$ cross section

' collisions from ϕ to ψ - USTC Hefei

PERIODIC INTERFERENCE NEAR THRESHOLD A. BIANCONI, E. TOMASI-GUSTAFSSON, PHYS. REV. LETT. 114, 232301

p is the momentum of the proton in the anti-proton rest frame.

The periodical behavior suggests an interference due to a rescattering of proton and antiproton at low kinetic energy and separation \sim 1 fm.

Proton and antiproton interact when they are almost phenomenological.

Unitarity implies a large imaginary part of form factors.

Space-like dimensional scaling

Time-like asymptotic behavior

Phragmèn Lindelöf theorem:

If a function $f(z) \rightarrow a$ as $z \rightarrow \infty$ along a straight line, and $f(z) \rightarrow b$ as $z \rightarrow \infty$ along another straight line, and f(z) is regular and bounded in the angle between, then a = b and $f(z) \rightarrow a$ uniformly in this angle.

$$\underbrace{\lim_{q^2 \to -\infty} G_{E,M}(q^2)}_{\text{space-like}} = \underbrace{\lim_{q^2 \to +\infty} G_{E,M}(q^2)}_{\text{time-like}}$$

CONCLUSIONS

Global models for proton and neutron, electric and magnetic form factors must be encouraged. They can help in understanding:

- the threshold behavior
- the proton radius
- the presence of zeros
- the asymptotic behavior
- the unphysical region

To measure:

- zero of G_{F}^{p} in space-like region
 - moduli of G_F and G_M in time-like region

- complex structure of form factors (polarization)
- unphysical time-like form factors $(p\overline{p} \rightarrow \pi^0 e^+ e^-)$

collisions from ϕ to ψ - USTC Hefei 2015 International Workshop on e^+e^-

EXPERIMENTS: NOW AND FUTURE

Additional slides

collisions from ϕ to ψ - USTC Hefei

2015 International Workshop on e^+e^-

AN INTERESTING MODEL

E. A. Kuraev, E. Tomasi-Gustafsson, A. Dbeyssi PLB712 240

PARTIAL WAVE FORM FACTORS

