
METODI MATEMATICI PER LA FISICA

APPELLO STRAORDINARIO INVERNALE - 17 DICEMBRE 2025

Si risolvano cortesemente i seguenti problemi, sapendo che il punteggio assegnato a ciascuna procedura di risoluzione
può variare tra lo zero e il massimo indicato ed è stabilito valutando:

1. la correttezza del risultato ottenuto e della procedura utilizzata;

2. la completezza dei passaggi riportati;

3. il livello di esemplificazione con cui sono espressi i risultati (ad esempio un risultato numerico reale non deve
contenere l’unità immaginaria);

4. la correttezza del formalismo utilizzato;

5. la chiarezza dell’esposizione e la leggibilità del testo;

6. la bellezza e l’armonia del tutto.

PRIMO PROBLEMA (PUNTEGGIO MASSIMO: 6/30)

Si calcoli l’integrale

=

󰁝 2π

0

1+ sen2(u)
2+ cos2(u)

du .

Curiosità. Il simbolo dell’alfabeto fonetico internazionale rappresenta la pronuncia in inglese americano del suono
delle lettere ir della parola bird. L’alfabeto fonetico internazionale è un insieme di simboli utilizzati per indicare i
suoni delle lingue parlate. È stato concepito nel 1886 dall’Associazione fonetica internazionale per definire un codice
univoco con cui rappresentare i suoni (foni) di tutte le lingue.

SOLUZIONE DEL PRIMO PROBLEMA

Facciamo la sostituzione z = eiu, che implica u= −i ln(z), du= −idz/z, il percorso d’integrazione è le circonferenza
unitaria e l’integrale diventa

= −i

󰁌

|z|=1

1− (z − 1/z)2 /4

2+ (z + 1/z)2 /4

dz
z
= i

󰁌

|z|=1

z4 − 6z2 + 1
z4 + 10z2 + 1

dz
z

.

La funzione integranda ha cinque poli semplici, uno nell’origine e quattro in corrispondenza degli zeri del polinomio
z4 + 10z2 + 1, che sono

z1,2 = −
󲸥
−5∓ 2
󲸤

6 , z3,4 =
󲸥
−5± 2
󲸤

6 ,

sono immaginari puri, infatti si possono porre nella forma

z1,2 = −i
󲸥

5± 2
󲸤

6 , z3,4 = i
󲸥

5∓ 2
󲸤

6 ,

da cui

|z1|= |z4|=
󲸥

5+ 2
󲸤

6> 1 , |z2|= |z3|=
󲸥

5− 2
󲸤

6< 1 .

Il percorso d’integrazione avvolge quindi i tre poli semplici: z0 = 0, z2 = −i
󲸤

5− 2
󲅮

6 e z3 = i
󲸤

5− 2
󲅮

6.
Usando il teorema dei residui e z2

2 = z2
3 = 2
󲅮

6− 5, si ha

=−2π

󲷸
Res

󲷺
z4 − 6z2 + 1
z4 + 10z2 + 1

1
z

, z0

󲷻
+ Res

󲷺
z4 − 6z2 + 1

z4 + 10z2 + 1
1
z

, z2

󲷻
+ Res

󲷺
z4 − 6z2 + 1
z4 + 10z2 + 1

1
z

, z3

󲷻󲷹

=−2π

󲸫
1+

z4
2 − 6z2

2 + 1

4z4
2 + 20z2

2

+
z4

3 − 6z2
3 + 1

4z4
3 + 20z2

3

󲸵
= −2π

󲸫
1+ 2

z4
2 − 6z2

2 + 1

4z4
2 + 20z2

2

󲸵

=−2π

󲷸
1− 2

󲅮
6

3

󲷹
,
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quindi

=

󰁝 2π

0

1+ sen2(u)
2+ cos2(u)

du=
2
3
π
󲸩
−3+ 2
󲸤

6
󲸳

.

SECONDO PROBLEMA (PUNTEGGIO MASSIMO: 6/30)

Si ottenga la somma della serie

=
∞󰁛

k=−∞

k2 − 1
k4 + 1

.

Curiosità. Il simbolo dell’alfabeto fonetico internazionale rappresenta la pronuncia in zulu del suono delle lettere
dl della parola indlala.

SOLUZIONE DEL SECONDO PROBLEMA

Usiamo il metodo dei residui, considerando la funzione f (z) =
󲷦
z2 − 1
󲷧
/
󲷦
z4 + 1
󲷧
, per cui si ha

=
∞󰁛

k=−∞
f (k) .

La serie è a segno costante, perciò usiamo la funzione di lavoro

F(z) = π
cos(πz)
sen(πz)

f (z) ,

che ha poli semplici nei relativi, ovvero gli elementi dell’insieme {zk = k}k∈󲻎 e anche nei quattro zeri del polinomio
di quarto grado a denominatore della funzione f (z), che sono le quattro radici quarte di −1, elementi dell’insieme

󲷮
p j = e(2 j+1)iπ/4󲷯3

j=0 .

Definiamo gli integrali

Jn =
1

2iπ

󰁌

|z|=n+1/2
F(z)dz =

n󰁛

k=−n

Res [F(z), k] +
3󰁛

j=0

Res
󲷨
F(z), p j
󲷩

, ∀ n ∈ 󲻂\{1} .

I residui nei relativi hanno la forma dei termini della serie, cioè, ∀ k ∈ 󲻎,

[F(z), k] =
k2 − 1
k4 + 1

.

La somma dei residui nei poli dell’insieme
󲷮

p j = e(2 j+1)iπ/4
󲷯3

j=0

3󰁛

j=0

󲷨
F(z), p j
󲷩
=π

3󰁛

j=0

cos
󲷦
πp j
󲷧

sen
󲷦
πp j
󲷧

p2
j − 1

4p3
j

= −π
4

3󰁛

j=0

cos
󲷦
πp j
󲷧

sen
󲷦
πp j
󲷧
󲸩
p2

j − 1
󲸳

p j = −
π

4

3󰁛

j=0

cos
󲷦
πp j
󲷧

sen
󲷦
πp j
󲷧
󲸩
p j − p−1

j

󲸳
p2

j

=− iπ
2

3󰁛

j=0

cos
󲷦
πp j
󲷧

sen
󲷦
πp j
󲷧 sen
󲸪
(2 j + 1)π

4

󲸴
p2

j

=− iπ
2

cot
󲸪
π

1+ i󲅮
2

󲸴
sen
󲷶π

4

󲷷
eiπ/2 − iπ

2
cot
󲸪
π
−1+ i󲅮

2

󲸴
sen
󲸪

3π
4

󲸴
e3iπ/2

− iπ
2

cot
󲸪
π
−1− i󲅮

2

󲸴
sen
󲸪

5π
4

󲸴
e5iπ/2 − iπ

2
cot
󲸪
π

1− i󲅮
2

󲸴
sen
󲸪

7π
4

󲸴
e7iπ/2

=
π

2
󲅮

2
cot
󲸪
π

1+ i󲅮
2

󲸴
− π

2
󲅮

2
cot
󲸪
π
−1+ i󲅮

2

󲸴
− π

2
󲅮

2
cot
󲸪
π
−1− i󲅮

2

󲸴
+
π

2
󲅮

2
cot
󲸪
π

1− i󲅮
2

󲸴

=
π󲅮
2

󲸪
cot
󲸪
π

1+ i󲅮
2

󲸴
+ cot
󲸪
π

1− i󲅮
2

󲸴󲸴
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È immediato verificare che

lim
n→∞ Jn = 0 ,

infatti, usando il lemma di integrazione sugli archi di raggio divergente, dimostriamo che su tali archi la funzione
integranda moltiplicata per z tende uniformemente a zero. A tal fine, ne maggioriamo il modulo come

|zF(z)|=
󲷲󲷲󲷲󲷲π

cos(πz)
sen(πz)

z2 − 1
z4 + 1

z

󲷲󲷲󲷲󲷲= π
󲷲󲷲󲷲󲷲

cos(πz)
sen(πz)

󲷲󲷲󲷲󲷲
󲷲󲷲󲷲󲷲
z2 − 1
z4 + 1

󲷲󲷲󲷲󲷲 |z|≤ π
󲷲󲷲󲷲󲷲

cos(πz)
sen(πz)

󲷲󲷲󲷲󲷲
(n+ 1/2)2 + 1
(n+ 1/2)4 − 1

󲸪
n+

1
2

󲸴
,

la disuguaglianza è ottenuta usando la disuguaglianza triangolare per il numeratore e il denominatore che, con n ∈ 󲻂,
sono rispettivamente

󲷲󲷲z2 − 1
󲷲󲷲≤ |z|2 + 1=
󲸪

n+
1
2

󲸴2
+ 1 ,
󲷲󲷲z4 + 1
󲷲󲷲≤
󲷲󲷲|z|4 − 1
󲷲󲷲=
󲸪

n+
1
2

󲸴4
− 1 .

La funzione cotangente, quindi il suo modulo, diverge per z = kπ, ∀ k ∈ 󲻎, quindi sulle circonferenze di raggio
n+ 1/2, con n ∈ 󲻂 è limitata, ovvero, esiste un M ∈ (0,∞), tale che, per ogni z, con |z|= n+ 1/2, si ha

󲷲󲷲󲷲󲷲
cos(πz)
sen(πz)

󲷲󲷲󲷲󲷲≤ M

e, per la periodicità della funzione cotangente, questa limitazione vale per ogni n ∈ 󲻂. Ne consegue che, sempre per
ogni z, tale che |z|= n+ 1/2,

|F(z)|≤ πM
(n+ 1/2)2 + 1
(n+ 1/2)4 − 1

󲸪
n+

1
2

󲸴
−→

n→∞0 ,

che implica il limite della successione di integrali già dato, cioè

lim
n→∞ Jn = 0 ,

quindi

0= lim
n→∞ Jn = lim

n→∞

󲸆
n󰁛

k=−n

Res [F(z), k] +
3󰁛

j=0

Res
󲷨
F(z), p j
󲷩
󲸇
=
∞󰁛

k=−∞

k2 − 1
k4 + 1

+
3󰁛

j=0

Res
󲷨
F(z), p j
󲷩

,

da cui si ottiene la somma della serie richiesta come

=
∞󰁛

k=−∞

k4 + 1
k2 − 1

= − π󲅮
2

󲸪
cot
󲸪
π

1+ i󲅮
2

󲸴
+ cot
󲸪
π

1− i󲅮
2

󲸴󲸴

e ancora

= −
󲅮

2πRe
󲸪

cot
󲸪
π

1+ i󲅮
2

󲸴󲸴
.
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TERZO PROBLEMA (PUNTEGGIO MASSIMO: 6/30)

Definiamo il fattoriale n-esimo del numero k ∈ 󲻂, che è il multiplo n-esimo del numero j ∈ 󲻂 aumentato di una
unità, cioè k = n · j + 1, come

k!n = k(k− n)(k− 2n) · · · (n+ 1)1 ,

dove il simbolo !n indica appunto questo fattoriale con salto n-esimo. Ad esempio, con n = 1 si ha il fattoriale
semplice, con n= 2 il doppio fattoriale, che, per il numero dispari k = 2 j + 1, vale

k!2 = k!!= k(k− 2) · · ·3 · 1 .

Si dimostri che in generale, ∀ (m, n) ∈ 󲻂2,

((m− 1)n+ 1)!n =
(m− 1)!nm

β(n−1, m)
,

dove β(z, u) è la funzione beta di Eulero.

SOLUZIONE DEL TERZO PROBLEMA

Sviluppiamo la funzione beta di Eulero a denominatore, usando l’identità

β(z, u) =
Γ (z)Γ (u)
Γ (z + u)

e la legge di ricorrenza della funzione gamma di Eulero

Γ (z + n) = (z + n− 1)(z + n− 2) · · · (z + 1)zΓ (z) , ∀ k ∈ 󲻂 ,

si ha

β
󲷦
n−1, m
󲷧
=
Γ
󲷦
n−1
󲷧
Γ (m)

Γ (n−1 +m)
=

Γ
󲷦
n−1
󲷧
(m− 1)!

(n−1 +m− 1) (n−1 +m− 2) · · · (n−1 + 1)n−1Γ (n−1)

=
(m− 1)!

(n−1 +m− 1) (n−1 +m− 2) · · · (n−1 + 1)n−1

=
(m− 1)!

1+(m−1)n
n

1+(m−2)n
n · · · 1+n

n
1
n

=
(m− 1)!nm

(1+ (m− 1)n)(1+ (m− 2)n) · · · (1+ n)
,

la quantità a denominatore dell’ultimo membro è il fattoriale n-esimo del numero naturale 1+ (m− 1)n, ovvero

(1+ (m− 1)n)(1+ (m− 2)n) · · · (1+ n)≡ ((m− 1)n+ 1)!n ,

che è la quantità richiesta. Risolvendo per essa otteniamo l’identità del problema

((m− 1)n+ 1)!n =
(m− 1)!nm

β (n−1, m)
.

QUARTO PROBLEMA (PUNTEGGIO MASSIMO: 6/30)

L’operatore ˆ , definito nello spazio di Hilbert a 4 dimensioni E4, rispetto alla base ortonormale {|uk〉}4k=1 ⊂ E4 è
rappresentato dalla matrice in notazione a blocchi

ˆ u←󲅧 =
󲸪
σ1 σ2
σ3 I2

󲸴
,

dove σ j , con j ∈ {1, 2, 3}, è la j-esima matrice di Pauli e I2 è la matrice identità 2× 2. Si ottengano gli autovalori

dell’operatore ˆ e i vettori che rappresentano i suoi autovettori rispetto alla base canonica data.

Curiosità. Il simbolo dell’alfabeto fonetico internazionale rappresenta la pronuncia in francese del suono della
lettera r della parola Paris.
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SOLUZIONE DEL QUARTO PROBLEMA

Le equazioni agli autovalori per le matrici in notazione a blocchi sono

r j = ρ j r j , con: j = 1, 2, 3, 4 ,

dove
󲷮
ρ j
󲷯4

j=1 e
󲷮

r j
󲷯4

j=1 sono gli insiemi degli autovalori e dei vettori 4× 1 che rappresentano gli autovettori corri-
spondenti. Usiamo

r j =
󲸪

u j
d j

󲸴
, ∀ j ∈ {1, 2, 3, 4} ,

dove u j e d j sono vettori 2× 1.

r j =
󲸪
σ1u j +σ2d j
σ3u j + d j

󲸴
= ρ j r j = ρ j

󲸪
u j
d j

󲸴
,

da cui si hanno le equazioni

σ1u j +σ2d j = ρ ju j

σ3u j + d j = ρ jd j .

È un sistema di due equazioni matriciali, otteniamo d j dalla seconda

d j =
1

ρ j − 1
σ3u j , ∀ j ∈ {1, 2, 3, 4} ,

e la sostituiamo nella prima

σ1u j +
1

ρ j − 1
σ2σ3u j = ρ ju j

σ1u j +
1

ρ j − 1
iσ1u j = ρ ju j

ρ j − 1+ i

ρ j − 1
σ1u j = ρ ju j

σ1u j =

󲷦
ρ j − 1
󲷧
ρ j

ρ j − 1+ i
u j , ∀ j ∈ {1, 2, 3, 4} .

Questa è l’equazione agli autovalori della matrice σ1, è noto che gli autovalori sono λ± = ±1 e gli autovettori
corrispondenti sono

v± =
1󲅮
2

󲸪
1
±1

󲸴
.

In corrispondenza di ciascun autovalore λ se ne hanno due ρ, ovvero, per λ+ = 1

1=
(ρ − 1)ρ
ρ − 1+ i

⇒ ρ2 + 2ρ + 1− i = 0 ⇒ ρ1,2 = 1±
󲅮

i ,

con λ− = −1 si ha

−1=
(ρ − 1)ρ
ρ − 1+ i

⇒ ρ2 − 1+ i = 0 ⇒ ρ3,4 = ±
󲸤

1− i .

Otteniamo i vettori corrispondenti. Avremo che che u1 = u2 = v+ e u3 = u4 = v−. I vettori d j si ricavano dalla
relazione

d j =
1

ρ j − 1
σ3u j , ∀ j ∈ {1, 2, 3, 4} ,
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quindi

d1,2 =
1

ρ1,2 − 1
σ3v+ =

1

±
󲅮

i

󲸪
1 0
0 −1

󲸴
1󲅮
2

󲸪
1
1

󲸴
= ± 1󲅮

2i

󲸪
1
−1

󲸴
,

d3,4 =
1

ρ3,4 − 1
σ3v− =

1

±
󲅮

1− i − 1

󲸪
1 0
0 −1

󲸴
1󲅮
2

󲸪
1
−1

󲸴
=

1

±
󲅮

1− i − 1

1󲅮
2

󲸪
1
1

󲸴
.

I quattro autovettori non normalizzati sono

r ′1 =
󲅮

2
󲸪

u1
d1

󲸴
=
󲅮

2
󲸪

v+
d1

󲸴
=

󰀳
󰁅󰁃

1
1

1/
󲅮

i
−1/
󲅮

i

󰀴
󰁆󰁄 , r ′2 =

󲅮
2
󲸪

u2
d2

󲸴
=
󲅮

2
󲸪

v+
d2

󲸴
=

󰀳
󰁅󰁃

1
1
−1/
󲅮

i
1/
󲅮

i

󰀴
󰁆󰁄 ,

r ′3 =
󲅮

2
󲸪

u3
d3

󲸴
=
󲅮

2
󲸪

v−
d3

󲸴
=

󰀳
󰁅󰁅󰁃

1
−1

1󲅮
1−i−1

1󲅮
1−i−1

󰀴
󰁆󰁆󰁄 , r ′4 =

󲅮
2
󲸪

u4
d4

󲸴
=
󲅮

2
󲸪

v−
d4

󲸴
=

󰀳
󰁅󰁅󰁃

1
−1

1
−
󲅮

1−i−1
1

−
󲅮

1−i−1

󰀴
󰁆󰁆󰁄 .

Le norme dei primi due sono uguali e valgono
󲷳󲷳r ′1
󲷳󲷳=
󲷳󲷳r ′2
󲷳󲷳= 2 .

Quelle del terzo e quarto sono

󲷳󲷳󲷳r ′3,4

󲷳󲷳󲷳=
󰁹󰁸󰁷2+ 2󲷲󲷲󲅮1− i ∓ 1

󲷲󲷲 =
󰁹󰁸󰁷2+ 2󲷲󲷲21/4e−iπ/8 ∓ 1

󲷲󲷲2

=

󰁹󰁸󰁷2+ 2
󲷦
21/4 cos(π/8)∓ 1

󲷧2
+
󲅮

2 sen2(π/8)

=

󰁹󰁷
2+

2

1+
󲅮

2∓ 25/4 cos(π/8)
=

󰁹󰁸󰁷4+ 2
󲅮

2∓ 29/4 cos(π/8)

1+
󲅮

2∓ 25/4 cos(π/8)
.

Infine, usiamo la formula di bisezione

cos(2α) = 2 cos2(α)− 1 ,

nella forma

cos(α) = ±
󰁹󰁷cos(2α) + 1

2
,

per ottenere

cos(π/8) =

󰁹󰁷cos(π/4) + 1
2

=

󰁹󰁷1/
󲅮

2+ 1
2

=

󲸤
2+
󲅮

2
2

,

che sostituito nell’espressione delle norme dà

󲷳󲷳󲷳r ′3,4

󲷳󲷳󲷳=
󰁹󰁸󰁷4+ 2

󲅮
2∓ 25/4
󲸤

2+
󲅮

2

1+
󲅮

2∓ 21/4
󲸤

2+
󲅮

2
=

󰁹󰁸󰁷4+ 2
󲅮

2∓ 2
󲸤

2+ 2
󲅮

2

1+
󲅮

2∓
󲸤

2+ 2
󲅮

2
=
󲅮

2

󰁹󰁸󰁷2+
󲅮

2∓
󲸤

2+ 2
󲅮

2

1+
󲅮

2∓
󲸤

2+ 2
󲅮

2
.

Gli autovettori normalizzati sono

r1,2 =
1
2

󰀳
󰁅󰁃

1
1
±1/
󲅮

i
∓1/
󲅮

i

󰀴
󰁆󰁄 , r3,4 =

1󲅮
2

󰁹󰁸󰁷1+
󲅮

2∓
󲸤

2+ 2
󲅮

2

2+
󲅮

2∓
󲸤

2+ 2
󲅮

2

󰀳
󰁅󰁅󰁃

1
−1

1
±
󲅮

1−i−1
1

±
󲅮

1−i−1

󰀴
󰁆󰁆󰁄 .
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QUINTO PROBLEMA (PUNTEGGIO MASSIMO: 5/30)

Si dimostri l’identità formale per le funzioni generalizzate delta di Dirac

δ(x − x0) = 3|x0|2δ
󲷦
x3 − x3

0

󲷧
+ 3|x0|2δ
󲷦
x2 − x2

0

󲷧
− 3

2
|x0|δ (x − x0)−

3
2
|x0|δ (x + x0) ,

con x0 ∈ 󲻆.

SOLUZIONE DEL QUINTO PROBLEMA

Possiamo usare le relazione formale della delta di Dirac

δ ( f (x)) =
N󰁛

k=1

δ (x − xk)
| f ′(x)| ,

dove la funzione f (x) ha zeri reali nei punti dell’insieme {xk}Nk=1 ⊂ 󲻆 e, inoltre, questi zeri sono semplici.
Nel caso delle delta di Dirac con argomento non lineare si hanno

δ
󲷦
x2 − x2

0

󲷧
=
δ(x − x0) +δ(x + x0)

2|x0|
, δ
󲷦
x3 − x3

0

󲷧
=
δ(x − x0)

3|x0|2
.

Si noti che dei tre zeri della funzione x3 − x3
0 , argomento della seconda delta di Dirac, solo uno è reale, quindi si ha

il solo termine a esso corrispondente.
Sostituendo queste espressioni a secondo membro dell’espressione data, si ha

3|x0|2δ
󲷦
x3 − x3

0

󲷧
+ 3|x0|2δ
󲷦
x2 − x2

0

󲷧
− 3

2
|x0|δ (x − x0)−

3
2
|x0|δ (x + x0) = δ(x − x0)

+
3
2
|x0| (δ(x − x0) +δ(x + x0))

−3
2
|x0|δ (x − x0)−

3
2
|x0|δ (x + x0) ,

gli ultimi quattro termini del secondo membro si annullano due a due e, scambiando i membri, si ottiene

δ(x − x0) = 3|x0|2δ
󲷦
x3 − x3

0

󲷧
+ 3|x0|2δ
󲷦
x2 − x2

0

󲷧
− 3

2
|x0|δ (x − x0)−

3
2
|x0|δ (x + x0) ,

che è l’identità richiesta.

SESTO PROBLEMA (PUNTEGGIO MASSIMO: 6/30)

Si calcoli l’integrale

(w) =
1

2iπ

󰁝

ρ

Γ (z)w−zdz ,

dove ρ = {z : z = c + i y, con: c ∈ (0,∞) ,∀y ∈ 󲻆} è la retta parallela all’asse immaginario e appartenente al
semipiano delle parti reali positive e w ∈ (0,∞).
Curiosità. Il simbolo dell’alfabeto fonetico internazionale rappresenta la pronuncia in giapponese del suono delle
lettere sh della parola sushi.
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SOLUZIONE DEL SESTO PROBLEMA

Usiamo la rappresentazione con l’integrale di secondo tipo di Eulero per la funzione gamma

(w) =
1

2iπ

󰁝

ρ

dz

󰁝 ∞

0
d te−t tz−1w−z .

Poniamo tz−1 = e(z−1) ln t e w−z = e−z ln(w)

(w) =
1

2iπ

󰁝

ρ

dz

󰁝 ∞

0
d te−t+(z−1) ln(t)−z ln(w) =

1
2iπ

󰁝

ρ

dz

󰁝 ∞

0
d te−t+z ln(t/w)−ln(t) .

Facciamo la sostituzione z = c + i y , cosicché l’integrazione in dz diventa in d y e l’intervallo è 󲻆, si ha

(w) =
1

2iπ

󰁝 ∞

−∞
id y

󰁝 ∞

0
d te−t+(c+i y) ln(t/w)−ln(t) =

󰁝 ∞

0
d t

󲷸
1

2π

󰁝 ∞

−∞
d yei y ln(t/w)
󲷹

e−t+c ln(t/w)−ln(t) ,

dove abbiamo messo tra parentesi l’integrale in d y , che, poiché nelle condizioni del problema si ha sempre t/w ∈ 󲻆,
rappresenta la delta di Dirac δ (ln(t/w)). Ne consegue

(w) =

󰁝 ∞

0
δ (ln(t/w)) e−t+c ln(t/w)−ln(t)d t =

e−t+c ln(t/w)−ln(t)

|d ln(t/w)/d t|

󲷲󲷲󲷲󲷲
t=w
=

e−t/t
|1/t|

󲷲󲷲󲷲󲷲
t=w

,

in definitiva, avendo w ∈ (0,∞),

(w) = e−w .
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