

giacomo.clementi@unipg.it francesco.cottone@unipg.it

<u>Giacomo Clementi</u>, <u>Francesco Cottone</u>, Igor Neri, Alessandro Di Michele, Maurizio Mattarelli, Antonio Michelucci, Luigi Catacuzzeno, Luca Gammaitoni

1

Energy Harvesting for the Internet of Things (IoT)

NiPS Laboratory Noise in Physical Systems

Vibrational Energy Harvesting

Electroactive materials can change their physical properties when stimulated by an electric field or mechanical excitation (ie: electrect or piezoelectric materials)

(b)

Electrostatic generators:

electrode detail

a) Parallel plate electrode

variation generates voltage

variation (0.1 mW/cm³)

(b)

Piezoelectric generators:

- a) Displacement of cantilever and strain variation in piezoelectric layer (1 mW/cm^3)
- b) MEMS scale PZT cantilever on Si

3D printed electroactive materials

Electromechanical characterization

- 3D printed materials that are low-cost and bio degradable and easy to manufacture
- PLA printed at different temperature starts to show foaming structure

3D-Printed Piezoelectret Based on Foamed Polylactic Acid for Energy-Harvesting and Sensing Applications, Perna et al (2023)

Bio-Energy Harvesting

Implantables

Challenges for miniaturized and ultralightweight devices for neuro and bio-engineering:

- Wireless and fully implantable systems with electronic interface for control, power harvesting and data communication.
- Batteries with sufficient **storage capacity** for many practical applications have large sizes and weigh more than 2 g.
- Batteries size often occupy up to 90% of the volume of implantable devices and account for more than 60% of their weight.

Medical implant devices:

- Sensing or single-cell manipulation
- Targeted drug delivery
- Minimally invasive surgery

5

Wireless and battery-free technologies for neuroengineering, Won et al (2021)

Membrane Potential of Bio Cells

Isolated specimen of mice soleus muscle with electric probe and ground

Self-powered temperature sensors harnessing membrane potential of living cells, Clementi et al (2024)

- Each of these cells is a cylinder with **100** μ m diameter ٠ and up to **cm in length**.
- **Higher number of Na/K pumps** in their membrane. •
- Membrane potential can reach -90 mV! •
- Using parameters available, harvested power from ٠ skeletal muscle cells is **about 4.5 nW**.

Possibility of miniaturization to get to ٠ higher frequncy bandwidth 6

Thesis Projects

Foamed Electroactive materials

Multilayer piezoelectret foam stack for vibration energy harvesting, Ray et al (2017).

Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response, Cui et al (2019)

Bio Energy Harvesting/Sensing

Battery-free, tuning circuit—inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids, Liu et al (2022).

Thesis projects:

- Characterization and design of 3D printed foamed electroactive devices
- Bio-energy harvesting for autonomous sensors

Funded Projects

- VITALTY Nanostructured and advanced materials and devices for energy harvesting
- **BETASMART** Prof. Cottone (UNIPG), Prof. Mengoni (UNIPD, INFN) ٠
- NANOFAB Progetto Ateneo Facility per micro e nano ٠ fabbricazione di NEMS/MEMS

COLLABORAZIONI CON AZIENDE LOCALI

COLLABORAZIONI

PARIS

University of Southampton (UK) Role: Knowledge Hub (EH-Vibrational)

Role: Knowledge Hub (ES)

Betavoltaic Generators – Betasmart

Project Collaboration with

- Prof. D. Mengoni INFN Padova
- Maddalena Pedio CNR Perugia
- Sara Dottorini (tesista)
- A. di Michele

Radioisotope	Maximum energy of β-particles (keV)	Half-life (years)	Maximum power density (W/g)	Availability
H-3	18.6	12.3	0.325	Medium
Ni-63	66.7	100.2	0.006	Low
Sr-90	545.9	28.8	0.164	High
Y-90	2,279.8	0.007	0.780	
⁹⁰ Sr + ⁹⁰ Y	-	-	0.944	High

•<u>Radioactive source</u> 3H (12.3 y half-time) 63Ni (100.1 y half-time) •<u>Semiconductor /semi-metal</u> SiC, Si-p Graphene/rGO

Decay formula is, $_{29}^{63}Ni \rightarrow _{29}^{63}Cu+ _{-1}^{0}\beta$

la Repubblica

8 6 6월 1611

Arriva la batteria atomica che dura 50 anni ed ha 10 volte più energia. Perché può essere una rivoluzione di Barbara Crimaudo

Betavolt-100 microwatts at 3V, 15x15x5 cubic millimeters

Betavoltaic Generators – Betasmart

NiPS Laboratory Noise in Physical Systems

NANOFAB Projects

Wet etcher (Idonus)

Plasma Ion Etcher/Coater (SPI)

PECVD furnace KT80 (Kintek)

(a)

11

Research Group

Prof. Francesco Cottone <u>francesco.cottone@unipg.it</u>

Dr. Giacomo Clementi giacomo.clementi@unipg.it

Dr. Igor Neri

Dr. Maurizio Mattarelli

Dr. Alessandro Di Michele

Prof. Luca Gammaitoni

Gabriele Perna

Thank you for your attention!

