

L'esperimento CMS a LHC e HL-LHC

ALESSANDRO ROSSI

ALESSANDRO.ROSSI2@UNIPG.IT

LHC @ CERN

Collider protoni-protoni @ 13TeV

Compact Muon Solenoid (CMS)

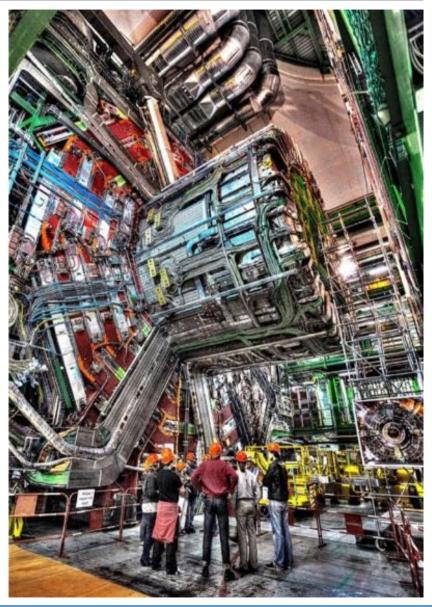
Gruppo di CMS

Chi siamo?

- Docenti UniPG
 - Baldinelli, Fanò, Mariani, Passeri, Placidi, Rossi, Santocchia
- Ricercatori INFN
 - Bilei, Menichelli, Morozzi, Panella, Spiga
- PostDoc e Dottorandi
 - Asenov, Bianchi, Ciangottini, Presilla, Turrioni, Ajmal, Ascioti, Carrivale, Magherini, Piccinelli, Tedeschi
- Ricercatori CNR
 - Moscatelli

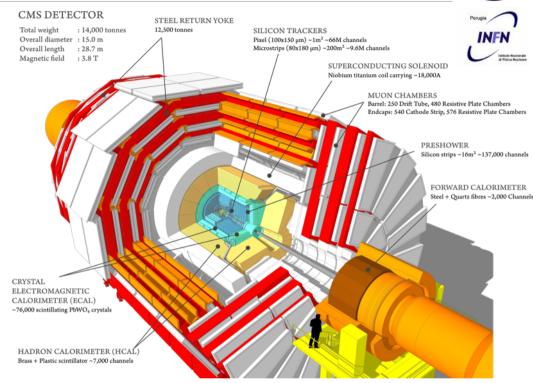
Gruppo interdisciplinare: Fisica, Ingegneria Meccanica, Ingegneria Elettronica, Calcolo Scientifico

CONTATTI:

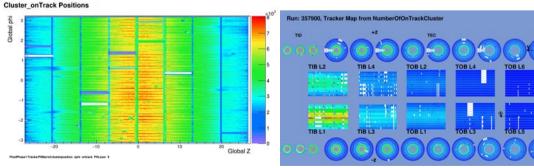

livio.fano@unipg.it
alessandro.rossi2@unipg.it
attilio.santocchia@unipg.it
valentina.mariani@unipg.it
moscatelli@iom.cnr.it

Cosa facciamo?

- Vengono seguite tutte le varie fasi legate all'esperimento:
 - Operazioni del detector
 - Ricostruzione eventi
 - Analisi dai dati
 - Costruzione nuovi rivelatori
 - Calcolo scientifico
 - R&D per nuovi rivelatori



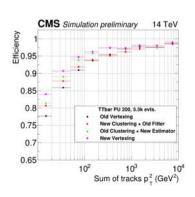
Operations and Reconstruction

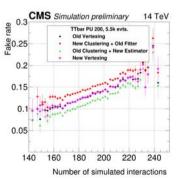

- Il gruppo di Perugia ha partecipato alla costruzione del sistema tracciante dell'esperimento
- Per questo motivo siamo storicamente legati a questo particolare sotto-rivelatore

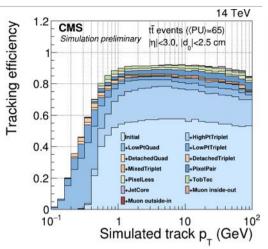
- Attività legate al detector:
 - Funzionamento durante la presa dati
 - Controllo della qualità dei dati raccolti

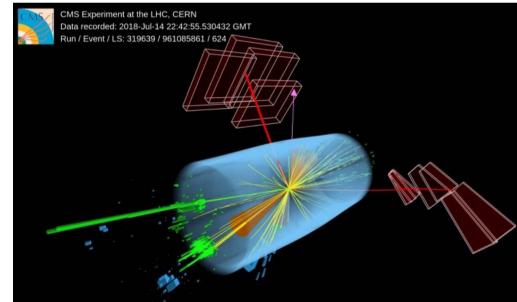
Operations and Reconstruction

 Molto importante per l'esperimento è la conoscenza di «quanto siamo bravi» a ricostruire quello che le fanno le particelle all'interno del nostro detector

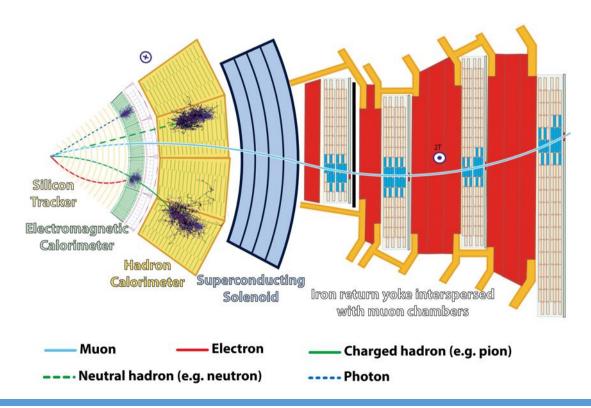


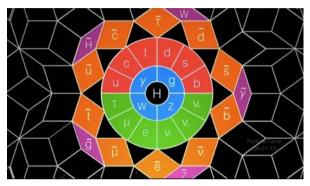

Per quanto riguarda il tracciatore le quantità da

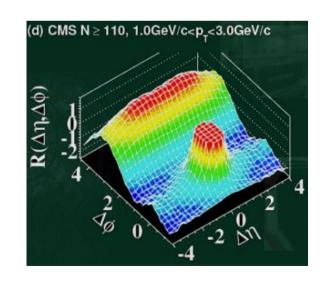

misurare sono principalmente:



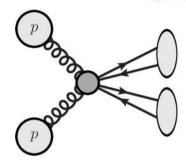
 Efficienza di ricostruzione vertici di interazione/decadimento

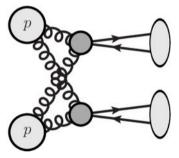


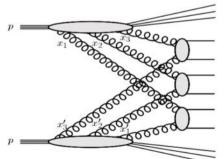

Analisi Dati



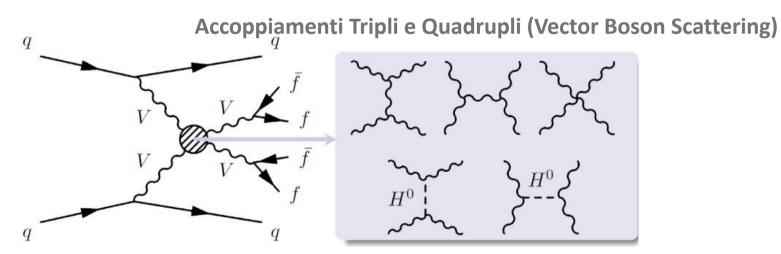
- Diversi argomenti:
 - QCD e interazioni partoniche multiple
 - Ricerca di Nuova Fisica


Analisi Dati



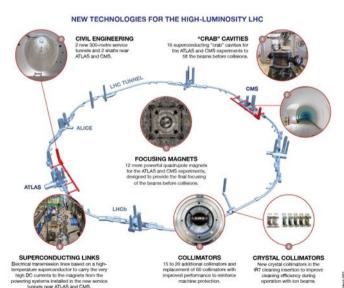

LHC è il laboratorio perfetto per lo studio della QCD

- Fisica a bassa energia -> studio della sezione d'urto di produzione di mesoni charm
 - Prima misura eseguita da collisioni pp in CMS
 - Misura complessa in ambiente adronico
 - Importanti input per i tuning di generazione MC
 - Prospettive: valutare la produzione di singolo e doppio charm come sonda per lo studio del Double Parton Scattering
- Triple parton scattering
 - Processo ancora più complesso da studiare rispetto al DPS
 - Può dare informazioni aggiuntive sulla correlazione dei partoni all'interno dei protoni
 - Prospettive: implementazione di metodi di Machine Learning per migliorare la separazione tra seganle e fondo


Analisi Dati

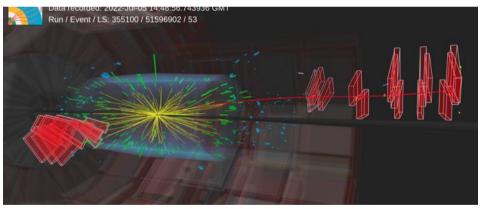
- Studio dei processi di Vector Boson Scattering
 - Sonda per i processi elettrodeboli alla scala del TeV
 - Processo direttamente collegato al meccanismo di rottura spontanea di simmetria e quindi al campo di Higgs
 - Sensibile a contributi di Nuova Fisica
 - Approccio Model Independent attraverso teorie effettive
 - Prospettive: analisi con i primi dati del Run3

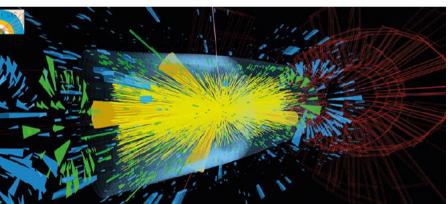
Produzione e scambio di Higgs (Vector Boson Fusion)


HL-LHC @ CERN

- Il futuro prossimo di LHC è praticamente domani
 - High-Luminosity LHC: aumentare la luminosità della macchina, avere un maggior numero di collisioni all'interno degli esperimenti (più dati in meno tempo!)
 - Necessari interventi importanti sull'accelleratore
 - ...ma anche nei rivelatori degli esperimenti

HL-LHC @ CERN

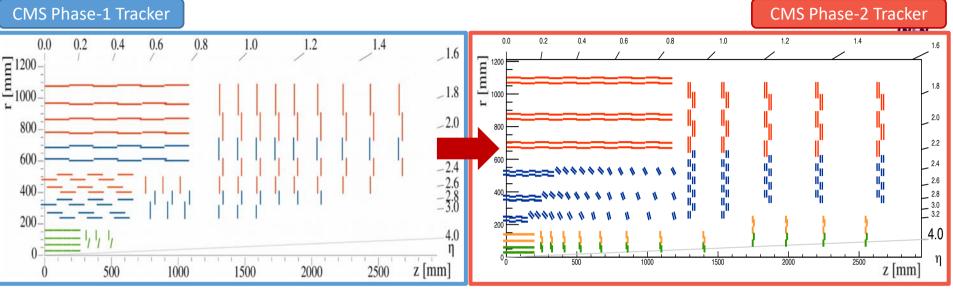

Aumentare la luminosità significa aumentare il numero di protoni che interagiscono ogni volta che I fasci vengono fatti collidere



Oggi: ~44 interazioni ogni 25ns

HL-LHC: ~200 interazioni ogni 25ns

LHC Run3 HL-LHC

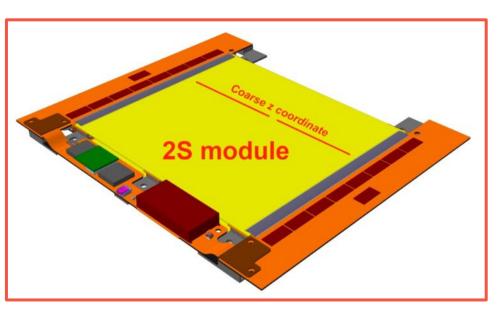


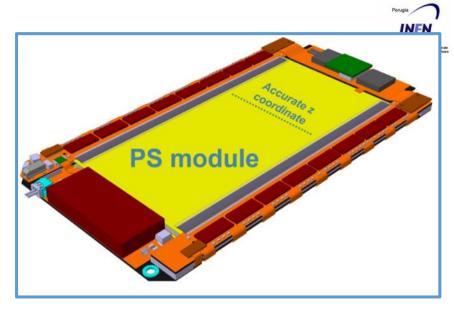
- I rivelatori che compongono CMS vanno aggiornati e in alcuni casi totalmente sostituiti
 - o Il tracciatore va completamente rifatto!

Costruzione

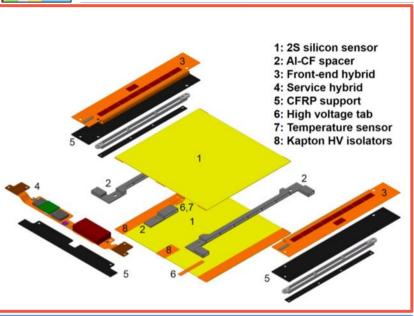
- Rivelatori a stato solido
 - Microstrip (rosso)
 - Microstrip+MacroPixel (blu)
 - Pixel (verde/giallo)

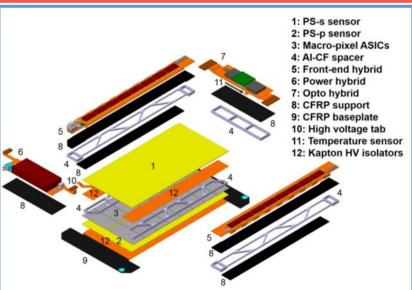
Outer Tracker

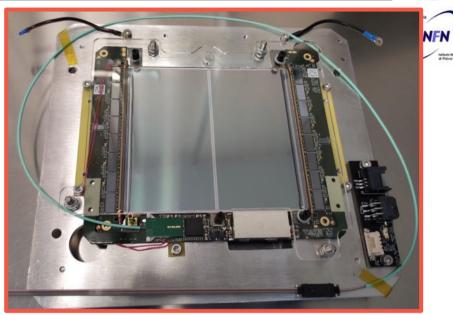

Inner Tracker

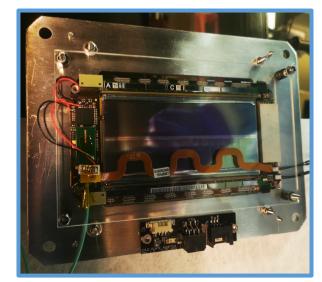

 Perugia è uno dei centri di assemblaggio dei singoli moduli dell'Outer Tracker

Costruzione

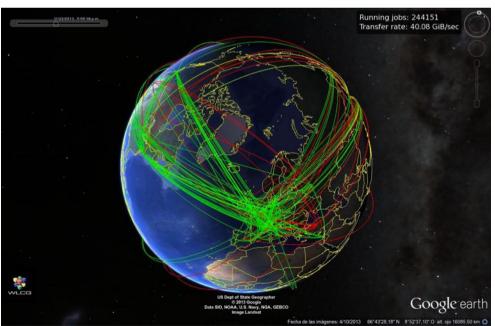

- Two types of modules:
 - 2S Modules (Strip-Strip)
 - 2 different spacings: 1.8mm & 4mm
 - 2 micro strip sensors with 5cm x 90μm strips
 - Sensor dimensions are 10cm x 10cm
 - o two columns of 1016 strips


- PS Modules (Pixel-Strip)
 - 3 different spacings: 1.6mm & 2.6mm & 4mm
 - One strip sensor: 2.5cm x 100μm strips
 - One macro Pixel sensor : 1.5mm x 100μm pixels
 - Sensor dimensions 5cm x 10 cm
 - two columns of 960 strips
 - 32x960 pixels



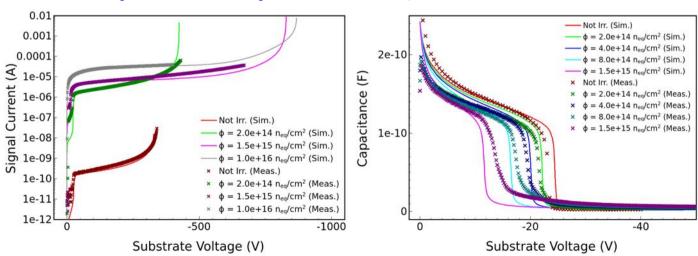

Costruzione




Computing

- Attvità di ricerca e sviluppo nel settore Data e Computing Science
 - Big Data
 - Cloud
 - Machine Learning and AI per l'analisi dei dati

R&D Rivelatori

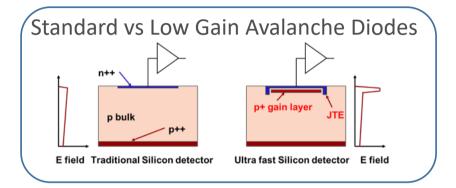


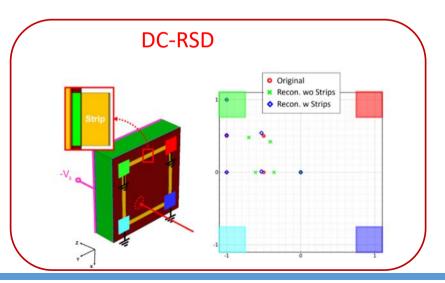
 In parallelo alle attività di costruzione vengono studiate ed analizzate nuove tecnologie e soluzioni per rivelatori al silicio

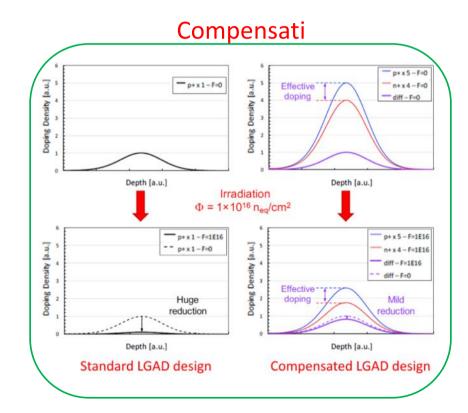
 Simulazione del danno da radiazione: Low Gain Avalanche Diode

Comparison with experimental data, before and after irradiation

Massey model. Temperature 300 K. Electrical contact area 1mm²




R&D Rivelatori



Simulazione del danno da radiazione: LGAD innovativi

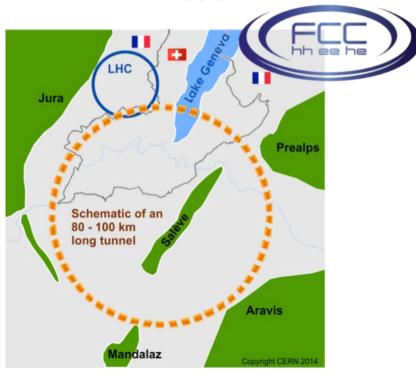
Cosa proponiamo?

Tante attività diversificate in questi quattro filoni di diverso livello: tesi triennali, magistrali e di dottorato

- Qualche esempio:
 - Analisi Dati Contatti: Valentina Mariani, Matteo Presilla
 - Tracking efficiency for slow pion with the D* method (collaboration with Desy group) using Run3 data
 - Open charm cross section measurement with 900 GeV Run3 data (collaboration with Desy group)
 - Triple Parton Scattering: machine learning application for the signal vs background separation
 - VBS in WZ with Z->tau tau
 - VBS ZZ fully-leptonic measurement with dimension-6 EFT
 - LHC EFT wg AREA1 tasks: chi-squared based prototype of SMEFT combination
 - Costruzione Contatti: Alessandro Rossi
 - Realizzazione sistema di test con raggi cosmici per rivelatori del Tracciatore di Fase2 di CMS
 - Costruzione e qualifica dei moduli al silicio per l'upgrade di fase2 del tracciatore al silicio
 - Analisi e simulazioni termiche per il sistema di raffreddamento del nuovo tracciatore
 - R&D Rivelatori Contatti: Francesco Moscatelli
 - Sviluppo di modelli TCAD per per l'analisi del danneggiamento indotto da radiazione ad elevatissime fluenze
 - Campagne di misura e irraggiamento su strutture di test e sensori
 - R&D Computing Contatti: Daniele Spiga
 - Applicazione di tecniche ML/DL all'analisi dei dati dell'infrastruttura di computing distribuita su scala mondiale a CMS
 - Sviluppo e test di strutture High Performance Computing (HPC)

Oltre LHC: Future Circular Collider

La comunità di fisica delle alte energie sta già lavorando per progettare e definire quello che verrà dopo HL-LHC



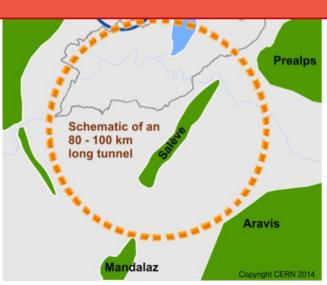
O Cosa serve: più sensibilità, più precisione, più energia

Una combinazione di collisionatori leptonici (e+e-) e adronici (pp,pHI,HIHI)

consente di ottenere tutto ciò

- Nuovo tunnel di circa ~91Km
 - Un unico tunnel per la fase leptonica ed adronica (come successo per LEP e LHC)
- Target finale: Collisioni pp a 100TeV
 - Tecnologia attualmente non disponibile
- Primo passo: collisionatore e+e-
 - Energia variabile tra 90 e 360GeV
 - Consente misure ad altissima precisione

Oltre LHC: Future Circular Collider


La comunità di fisica delle alte energie sta già lavorando per progettare e definire quello che verrà dopo HL-LHC

- O Cosa serve: più sensibilità, più precisione, più energia
 - Una combinazione di collisionatori leptonici (e+e-) e adronici (pp,pHI,HIHI) consente di ottenere tutto ciò

Recente seminario di Patrizia Azzi presso il nostro dipartimento: Registrazione Seminario

- On unico tunnel per la fase leptonica ed adronica (come successo per LEP e LHC)
- Target finale: Collisioni pp a 100TeV
 - Tecnologia attualmente non disponibile
- Primo passo: collisionatore e+e-
 - Energia variabile tra 90 e 360GeV
 - Consente misure ad altissima precisione

Proposte FCC

- Fenomenologica Contatti: Matteo Presilla
 - o in collaborazione con Patrizia Azzi, INFN Padova
 - Angular analysis for FCC-ee future collider with e+e→WW.
 Search for Effective Field Theory in angular distributions.
 - State of the art: https://indico.cern.ch/event/1076058/contributions/4525652/attachments/2 312556/3935839/Angular%20analysis%20ee%20-%20WW%20final%20states.pdf (the group has left the work, code and everything to start from here available)
- Studi su ottimizzazione tracciamento a FCC
 - Contatti: Valentina Mariani